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1 Introduction

The study of two-dimensional conformal field theories on Riemann surfaces has had many

fruitful applications in physics and mathematics. In many ways the field theory of a chiral

free fermion is the most important and instructive example. In that case one considers a

Riemann surface or algebraic curve Σ together with a line bundle L that comes equipped

with connection A. The free fermion partition function computes the determinant of the

twisted Dirac operator ∂A coupled to the line bundle L. This determinant has many inter-

esting properties, e.g. the dependence of this determinant on the connection A is captured

by the Jacobi theta-function. It is known for a long time that these chiral determinants are

closely related to integrable hierarchies of KP-type [1–3]. In the simplest case this relation

arises as follows. One picks a point P ∈ Σ on the curve together with a local trivialization

et of the line bundle around P . The ratio with respect to a reference connection A0

τ(t) =
det ∂A

det ∂A0

then becomes a so-called tau-function of the KP-hierarchy. In the Hamiltonian formulation

one associates a state |W〉 in the fermionic Fock space F to the line bundle on Σ− P . In

the semi-infinite wedge representation of the Fock space this state can be considered as the

wedge product of a basis that spans the space of holomorphic sections

W = H0(Σ − P,L).

Similarly, a coherent state |t〉 is associated to the local trivialisation around P . Combining

these two ingredients the tau-function can be written as

τ(t) = 〈t|W〉. (1.1)

With the advent of matrix models it became clear that string theory can also give rise to so-

lutions of KP-type of the form (1.1). More recently this connection to integrable hierarchies

has been reformulated and generalized through the methods of topological strings [4, 5].

These string theory solutions are similar, but not equivalent, to the familiar geometric solu-

tions coming from CFT that are sketched above. In particular the relevant Fock space state

|W〉 does not have a purely geometric interpretation as generated by a space of sections

over a curve. Yet, in the string theory setting an algebraic curve Σ does appear. (Here

it should be stressed that this curve is not a string world-sheet, but should be considered

as (part of) the target space geometry.) But in this case there is an extra parameter: the

string coupling constant λ. Only in the genus zero or classical limit λ → 0 a geometric

curve arises. There have been many indications that λ should be interpreted as some form

of non-commutative deformation of the underlying algebraic curve. In the simplest cases

Σ appears as an affine rational curve given by a relation of the form

F (x, y) = 0,

in the complex two-plane C
2, with a (local) parametrization

x = p(z), y = q(z),

– 2 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
7

with p, q polynomials. Of course, p and q commute: [p, q] = 0. However, the string-type

solutions with λ 6= 0 are characterized by quantities P and Q that no longer commute but

instead satisfy the canonical commutation relation

[P,Q] = λ.

In this case clearly P , Q cannot be polynomials, but are represented as differential oper-

ators, i.e. polynomials in z and ∂z. As we will point out in this paper a suitable concept

to frame these solutions is a D-module. Instead of classical curve in the (x, y)-plane, we

should think of a quantum curve as an analogue in the non-commutative plane [x, y] = λ.

If we interpret

y = −λ ∂
∂x
,

one can identify such a quantum curve as a holonomic D-module W for the algebra D of

differential operators in x. Now there is a straightforward way in which such a D-module

gives rise to a solution of the KP-hierarchy. By definitionW carries an action of both x and

∂x. However we are free to ignore the second action, which leaves us with the structure

of an O-module, O being the algebra of functions in x. By applying the infinite-wedge

construction to the module W we obtain in the usual way a state |W〉 in the fermion Fock

space. Roughly speaking, W can be considered as the space of local sections that can

be continued as sections of a (non-commutative) D-module, instead of sections of a line

bundle over a curve. This set-up can be generalized in many ways and in this fashion

several constructions in topological string theory, matrix models and integrable hierarchies

can be connected. It is the purpose of this paper to explain the connections between these

familiar ingredients from the D-module perspective.

This paper is structured as follows:

In section 2 we introduce our notion of a quantum curve and provide a construction

of a tau-function associated to it. This tau-function arises, in an appropriate sense, from a

quantization of the Krichever correspondence described in section 2.1. The physical system

relevant for this quantization consists of an intersecting brane configuration with B-field

in string theory. It is introduced in [5] and reviewed in section 2.2. The D4 and D6-branes

wrap an affine complex curve Σ that is embedded in a complex symplectic plane. Endpoints

of the strings stretched between D4 and D6-branes appear as fermionic modes on Σ, which

are quantized by the B-field. This turns the chiral fermions into sections of a so-called

D-module. In section 2.2 we explain in which sense a D-module quantizes the spectral

curve and in section 2.3 we discuss how one can associate a fermionic state |W〉, and thus

a tau-function, to such a D-module.

In sections 3, 4 and 5 we analyse three physical systems in which above quantization is

realized: respectively matrix models, c = 1 string theory and N = 2 supersymmetric gauge

theories. We find that a quantization of the underlying classical curve yields a differential

system that determines the corresponding partition functions. In other words, we see how

our formalism in section 2 gives a unifying picture of these topics in terms of a underlying

quantum curve.

– 3 –
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2 Quantum curves and invariants

The main object of interest in this paper is a chiral fermion field living on a holomorphic

quantum curve. This set-up is embedded in string theory as a configuration of D4 and

D6-branes that intersect along a classical curve Σ. Turning on a B-field on the D6-brane

quantizes the curve Σ. As was shown in [5] this intersecting brane configuration is closely

related to topological string theory, supersymmetric gauge theory and matrix models. More

precisely, it relates to the topological B-model on non-compact Calabi-Yau backgrounds of

the form

XΣ : uv − F (z,w) = 0,

that is modeled on an affine curve Σ defined by the equation F (x, y) = 0. The topological

string partition function admits an expansion

Ztop(t, λ) = exp
(∑

λ2g−2Fg

)

in the topological coupling constant λ, whose classical contribution F0 captures the complex

periods

Xi =

∫

Ai

Ω, ∂iF0 =

∫

Bi

Ω

of XΣ, while the semi-classical contribution F1 is known to compute a chiral determinant

expF1 = det ∂Σ (2.1)

on Σ. All higher order Fg’s give quantum corrections to these results.

As we alluded to in the introduction, the chiral determinant (2.1) has an elegant

interpretation in terms of certain geometric solutions of the KP hierarchy, which is known

as the Krichever correspondence. In this context the chiral determinant is known as a

tau-function. On the other hand, the total topological string partition function is also

known to represent a tau-function of a KP hierarchy, though in this case it doesn’t have a

similar geometric interpretation. The aim of this section is to propose a quantum analog

of the Krichever correspondence, starting from a quantum curve. We conjecture that this

prescription computes the all-genus topological string partition function.

In this section we start by reviewing the Krichever correspondence. We continue by

reviewing the intersecting brane system and explain what we mean by a quantum curve.

In the last subsection we line out our prescription to obtain invariants from such a quan-

tum curve.

2.1 Krichever correspondence

In this section we review the geometric Krichever correspondence that underlies the genus

1 free energy F1 of the topological string. In the simplest scenario we start with a Riemann

surface Σ with a single puncture P . We study a chiral fermion field

ψ(z) =
∑

r∈Z+1/2

ψrz
−r−1/2, {ψ†

r, ψs} = δr+s,0

– 4 –
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on Σ which is coupled to a line bundle L. The Hilbert space H of this fermion field is built

by acting on the Dirac vacuum |0〉 with the fermionic modes ψr and ψ†
r. The boundary

conditions near P , i.e. the choice of local coordinates and a choice of local frame of L near

P , are encoded in a coherent state

〈t| = 〈0|e
P

tnαn ,

where αn =
∑

r : ψ†
rψn−r : are the bosonized modes. The partition function of the fermion

field sweeps out a state |W〉 in the Hilbert space H, and for a given choice t of boundary

conditions it reads

τ(t) = 〈t|W〉. (2.2)

The Krichever correspondence tells us precisely how to find the state |W〉. Choosing

z−1 as a local coordinate around P , we define a subspace

W ≡ H0(Σ − P,L) ⊂ C[z]⊕ C[[z−1]]. (2.3)

By picking a semi-infinite basis wn = zn(1 +O(z−1)) of this subspace, it can be quantized

into a fermionic state

|W〉 = w1 ∧ w2 ∧ w3 ∧ . . . ∈ H. (2.4)

on which the fermionic modes act as

ψr =
∂

∂z−r+1/2
, ψ†

r = zr−1/2 ∧ .

Any state |W〉 that we obtain in this way looks like

|W〉 = g|0〉, where g = exp
(∑

cnmψnψ
†
m

)
∈ Gl(∞). (2.5)

All states of the above form parametrize an infinite Grassmannian, which is well-known

to give an elegant geometric formulation of the KP integrable hierarchy. (A more detailed

review of these issues can be found in appendix A, which will be useful later on.)

Important for now is that although one can associate a tau function to any element

|W〉 in the Grassmannian, as in equation (2.2), only a dense subset of subspaces W in the

infinite Grassmannian of measure 0 allows for a geometric Krichever interpretation. This

subset can be characterized as follows. Basically, a subspace W has a geometric origin

when there is an algebra A such that

A ·W ⊂ W, (2.6)

with A being non-trivial, i.e. A 6= C. In this situation the underlying curve Σ can be

defined in terms of its spectrum A = H0(Σ − P,L) and the tau-function (2.2) has an

interpretation as a fermionic determinant det ∂Σ.

– 5 –
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2.2 B-field, D-modules and quantum curve

Our motivation for quantizing the Krichever correspondence comes from [5], where it is

argued that topological string theory is related by a chain of dualities to a system of

intersecting D4 and D6 branes in type IIA with a background B-field. We now review

some aspects of this relation.

2.2.1 I-brane configuration

In the intersecting brane set-up a central role is played by a holomorphically embedded

curve Σ ⊂ B, given by the equation

Σ : F (z,w) = 0,

where B = C × C (or possibly with either C replaced by C
∗) is parametrized by complex

coordinates (z,w). We consider this curve in the type IIA background

(IIA) R
3 × B × R

2 × S1, (2.7)

and place a D4-brane wrapping R
3×Σ and a D6-brane wrapping B×R

2×S1. These branes

intersect over Σ. Fermions on Σ are realized by massless modes of the 4-6 strings. The

supersymmetry of the system ensures holomorphicity. The supersymmetries act trivially

on the chiral fermions, which constitute a topological subsector of the complete system.

Non-commutativity in this set-up is introduced by turning on a constant B-field along

B, with holomorphic part

B =
1

λ
dz ∧ dw. (2.8)

It is realized on the worldvolume of the D6-brane.

By a chain of dualities presented in [5] this I-brane configuration relates to the back-

ground

(IIA) R
3 × X̃ × S1, (2.9)

with a D6-brane wrapping X̃ × S1. This setup is appropriate for a computation of

Donaldson-Thomas invariants DT (n, d), physically interpreted as BPS bound states of

n ∈ H0(X̃,Z) ∼= Z D0-branes and d ∈ H2(X̃,Z) D2-branes to the D6-brane. The generat-

ing function of these invariants

Zqu(t, λ) =
∑

n,d

DT (n, d) e−nλed·t (2.10)

is closely related to the A-model topological string partition function on the toric manifold

X̃ with the complexified Kähler class t ∈ H2(X̃)

Ztop(t, λ) = exp

(
− t3

6λ2
− 1

24
t · c2(X̃)

)
Zqu(t, λ). (2.11)

Following the duality chain mentioned above, the (holomorphic) parameter λ which

initially specified a value of the B-field (2.8) acquires an interpretation of the topological

– 6 –
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Figure 1. The I-brane configuration. A D4-brane intersects with a D6-brane along a curve Σ. The

4-6 string degrees of freedom show up as free fermions on Σ.

string coupling constant λ [5]. After summing over all bound states with p D4-branes as

well, while weighting their contribution with a potential ξ, the partition function of the

final configuration reads

ZI(ξ, t, λ) =
∑

p∈H2( eX,Z)

epξZtop(t+ pλ, λ). (2.12)

We identify this partition function with the I-brane partition function of the initial config-

uration (2.7).

The above system can also be easily related to the supersymmetric gauge theories

leading to a system of D4-branes spanned between NS5-branes. As shown by Witten [6],

such a configuration engineers N = 2 supersymmetric gauge theories. We will elucidate

this relation in much detail in section 5.

2.2.2 B-field

The B-field quantizes the fermions on Σ. Let us first repeat the general arguments of [5].

The algebra A of open 6-6 strings on the D6-brane describes the interaction (as illustrated

in figure 2)

A⊗A → A, (2.13)

and is explicitly non-commutative in the presence of a B-field. The B-field introduces a

gauge field A on the D6-brane that couples to the open strings and quantizes the algebra

of zero-modes of those strings [7, 8]. With a B-field given by

B =
1

λ
dz ∧ dw (2.14)

– 7 –
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the non-commutativity parameter is λ. The complex coordinates z and w become non-

commutative operators obeying

[z,w] = λ. (2.15)

In case B = C×C we can identify this algebra with the Weyl algebra of differential operators

A ∼= DC = 〈z, λ∂z〉. (2.16)

When we add to this system a D4-brane intersecting the D6-brane along the curve Σ,

a 6-6 string acting on a 4-6 string can produce another 4-6 string (see figure 2)

A×M→M. (2.17)

This action endows the space of 4-6 open strings M with the structure of a module over

the algebra A of 6-6 strings. Modules for the algebra of differential operators are called

D-modules.

To conclude, in the presence of a background flux, the chiral fermions on the I-brane

should no longer be regarded as sections of the spin bundle K1/2. Instead they should be

viewed as sections of a D-module.

In the context of string theory it is worth stressing the range of parameters α′ and λ

in which D-module description is valid. The string coupling λ, which enters in the B-field

flux as B = 1
λdz ∧ dw, plays an important role as quantization parameter. From the D-

module point of view there seems to be no restriction on λ, so one might hope that the

D-module even captures non-perturbative information. However, in a particular system

under consideration some restrictions on the values of λ could arise that are related to

the radius of convergence of the partition function. Although we do make some additional

remarks in section 3 and in section 6, we do not study these issues in this paper.

On the other hand, the string scale α′ does not play a fundamental role in the D-

module. The D-module describes the topological sector of the intersecting brane configu-

ration, which is realized in terms of massless modes of the I-brane system. Therefore the

D-module description is valid only in the regime where α′ is small (so that no massive modes

interfere with our description). The most interesting case is of course when it is non-zero,

as it provides a normalization factor for the worldsheet instanton contributions to the open

4-6 strings in the I-brane partition function (2.12). Section 5 clarifies this with an example.

2.2.3 D-modules and quantum curves

We here introduce basic facts concerning D-modules and explain why they naturally de-

scribe I-branes. More details concerning theory of D-modules can be found in appendix B.

D-modules are defined as modules for the algebra of differential operators D. In this

paper we are interested in D-modules for the Weyl algebra D = 〈z, ∂z〉. These are affine

D-modules of rank 1 and can represented as

M =
D
D · P ,

– 8 –
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A MA

A A

M
6

6 6 6 6

4

Figure 2. The algebra A of functions on Σ acts on the moduleM of free fermions. In the presence

of a B-field the algebra A may be represented as a differential algebra, so that M becomes a

D-module.

where P is a linear differential operator P =
∑

i ai(z)∂
i
z . The moduleM therefore captures

solutions to the differential equation

PΨ = 0, (2.18)

where Ψ takes values in some function space V, for example the algebra OC of holomorphic

functions on the complex plane C. D-modules of rank 1 are cyclic, i.e. they are generated

by a single element Ψ ∈M, and so are of the form

M = {DΨ : D ∈ D}. (2.19)

To be more precise, D-modules generated by the B-field (2.8) depend on λ and are

known as Dλ-modules [20] (when λ is considered as a formal variable). Since all the

differential modules we consider are Dλ-modules, we often omit the subscript λ.

The D-module structure D ·M ⊂M gives a quantization of the semi-classical descrip-

tion in equation (2.6). In particular, the rank 1 D-module

M =
D

D · P (z)
(2.20)

is a quantization of the module

W =
O{z,w}

O{z,w} · F (z,w)
(2.21)

of functions on the curve defined by F (z,w) = 0. We therefore refer to the underlying

differential equation P (z) = 0 as a quantum curve. The I-brane set-up will obviously

provide us with a rank 1 D-module that represents a quantization of the I-brane curve Σ.1

Our notion of a quantum curve agrees with a notion of quantum spectral curves in

the theory of (Hitchin) integrable systems. We discuss this relation shortly in appendix C.

Here we just give some examples of D-modules and their interpretation in terms of quan-

tum curves.
1As a side remark notice that holonomic D-modules of dimension higher than 2 cannot be embedded

in the 10 dimensions of string theory. Holonomic D-modules of dimension 2 are not related to the type II

Calabi-Yau compactifications that we study in this paper, but could play a role in 4-dimensional Calabi-Yau

compactifications in F-theory.

– 9 –
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2.2.4 Examples

1) Take a linear partial differential operator on C, for example

P = λz∂z − 1. (2.22)

The differential equation PΨ = 0 is solved by Ψ(z) = z1/λ. So according to (2.19)

the corresponding D-module can be represented as

M = 〈z, λ∂z〉 z1/λ. (2.23)

There are many equivalent ways of writing this module. For example, introducing

Ψ̃ = zΨ, the above differential equation is transformed into P̃ Ψ̃ = 0 with

P̃ = λz∂z − λ− 1. (2.24)

This new operator, as well as the solution to the new equation Ψ̃ = z1+1/λ look

different than before. Nonetheless, they represent the same D-module

M = 〈z, λ∂z〉 z1+1/λ = 〈z, λ∂z〉 z1/λ. (2.25)

This simple example illustrates how the formalism of D-modules allows to study

solutions to partial differential equations independently of the way in which they are

written.

An equivalent way to study D-modules is in terms of flat connections (see equa-

tion (B.10)). The flat connection corresponding to P is given by

∇A = λ∂zdz −
1

z
dz, (2.26)

and determines Ψ(z) as a local flat section. It is a λ-deformation of the degree 1

spectral cover

Σ : w =
1

z
, (2.27)

with z,w ∈ C
∗, together with the (meromorphic) 1-form

A =
1

z
dz. (2.28)

This example enters string theory as the deformed conifold geometry describing the

c = 1 string. We will come back to it in section 4.

2) All the modules that we will study in this paper are over C or C
∗. It is important

that they may be of any rank though. Let us therefore also give a rank two example

on the complex plane C. The second order differential equation

PΨ = (λ2∂2
z − z)Ψ (2.29)

– 10 –
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Figure 3. A second order differential operator P in λ∂z defines a rank 2 λ-connection ∇λ. The

determinant of ∇0 determines a degree 2 cover over C which is called the spectral curve Σ.

can be written equivalently as a rank two differential system

Pijψj = 0, with Pij =

(
λ∂z 0

0 λ∂z

)
−
(

0 1

z 0

)
. (2.30)

Holomorphic solutions of this linear system are captured by the map

M =
D⊕2

D⊕2 Pij
→ O⊕2

C
(2.31)

that sends the two generators [(1, 0)t] and [(0, 1)t] to two independent (2-vector)

solutions of PΨ = 0. The corresponding flat connection

∇A = ∂zdz −
1

λ

(
0 1

z 0

)
dz (2.32)

is a λ-deformation of the degree 2 spectral cover (illustrated in figure 3)

Σ : w2 = z, (2.33)

with meromorphic 1-form η = wdz|Σ. Note that this one-form pushes forward to the

connection 1-form, or Higgs field,

A =

(
0 1

z 0

)
dz (2.34)

in the basis {dz,wdz} of ramification 1-forms on the z-plane. Indeed, local sections

of L push forward to local sections generated by 1 and w on the z-plane. Now,

wdz · 1 = wdz and wdz · w = w2dz = zdz on Σ.

We will discuss the string theory interpretation of this D-module in detail in section 3.

– 11 –
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2.3 Prescription

Locally D-module on a general curve is just a system of linear differential equations, that

changes from patch to patch. It is therefore natural to try to associate quantum invariants

locally, and glue them with the help of the D-module transformations (which are a quan-

tization of the usual coordinate transformations). This is exactly the strategy we follow in

the examples treated in the following sections.

The simplest examples are deformations of affine curves of genus 0 with a single marked

point at infinity, i.e. consisting of a single patch near infinity. In these examples we associate

a quantum invariant to the curve in the following way:

We start with a differential equation P (z) = 0 representing the quantum curve, where

z−1 is the coordinate near infinity. Solutions to the differential equation P (z)Ψ(z) = 0

form a moduleM, which is in particular O-module. We call this O-moduleW, and expect

it to yield a subspace

W ⊂ C((z−1)).

In that case we can, analogously as in the semi-classical case, turnW into a fermionic state

and compute a tau-function.

Since the I-brane configuration provides a Dλ-module (in contrast to a D-module)

the resulting I-brane fermionic state |W〉 is a λ-deformation as well. We conjecture that

its determinant computes the all-genus topological string partition function, when the

appropiate quantum curve is chosen.

In next sections we also discuss examples where we need to glue two local patches.

Since each local patch yields a subspace of functions in the local variable, it is clear how

the glueing should work: we need to insert a Fourier-like operator that relates the D-module

on the first patch to the one on the second patch. As a result, the partition function turns

into a correlation function which contracts the two corresponding fermionic states, with

the insertion of the corresponding Fourier-like operator. (This is similar as in [4].)

The above recipe doesn’t tell us how to quantize a classical curve in a specific physical

set-up. This is a very hard question in general. Moreover, it is not clear that the above

prescription is independent of the chosen covering by local patches. Rather then providing

a general theory, in the following sections we analyze several important examples of spectral

curves in string theory, and determine Dλ-modules that underlie their partition functions.

Before we start with these examples though, let us explain the local procedure in more

detail in two simple cases.

2.3.1 Examples

1) Let’s first explain the rank 1 case, with a Dλ-module on C specified by the (mero-

morphic) connection ∇A = ∂z − 1
λA(z) that may be trivialized as

∇A = ∂z − gλ(z)−1(∂zgλ(z)).

When gλ(z) is a holomorphic function on C that equals gλ(0) = 1 at z = 0 — in the

notation of equation (A.20) this is an element of Γ+ — this represents a pure gauge

transformation on the disk, so that ∇A corresponds to a regular flat connection on C.

– 12 –
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For any gλ(z) a fermionic section ψ(z) of L ⊗K1/2 may be written as

ψ(z) = gλ(z)ξ(z),

where ξ(z) is a section of L⊗K1/2 with trivial connection ∂z. Flat sections Ψ(z) are

defined by the differential equation

(
∂z −

1

λ
A(z)

)
Ψ(z) = 0.

They define a local trivialization of the bundle L with connection ∇A, and we will

use them to translate the geometric configuration into a quantum state.

A flat section for the trivial connection ∂z is given by Ξ(z) = 1. We associate the pair

(C, ∂z) to the ground state |0〉 = z0 ∧ z1 ∧ z2 ∧ . . .. The gauge transformation gλ(z)

maps the trivial solution Ξ(z) = 1 to Ψ(z) = gλ(z), which transforms the vacuum

into the fermionic state

|W〉 = gλ|0〉 ≡ gλ(z)z0 ∧ gλ(z)z1 ∧ .

In other words, we build the quantum state by acting with the D-module generator

Ψ(z) = gλ(z) on the vacuum

W = Dλ ·Ψ(z).

The state |W〉 is just the second quantization of the Dλ-module W. This state is

non-trivial only when gλ(z) is not a pure gauge transformation (which would corre-

spond to a Krichever solution). In this situation the flat section diverges near z = 0,

corresponding to a distorted geometry in this region.

2) A degree n spectral curve Σ is quantized as a λ-connection of rank n. This is equiv-

alent to a Dλ-module M that is generated by a single degree n differential operator

P . As an OC-module, though,M is generated by an n-tuple

(Ψ(z), ∂zΨ(z), . . . , ∂n−1
z Ψ(z)),

where Ψ(z) is a solution of the differential equation PΨ = 0. In other words, this

blends an n-vector of solutions to the linear differential system that the λ-connection

defines. We will name this OC-module

W = OC · (Ψ(z), ∂zΨ(z), . . . , ∂n−1
z Ψ(z)) ⊂ C((z−1))

(of course it contains the same elements as M). This is the subspace we want to

second quantize into a fermionic state |W〉.
P has n independent solutions Ψi that differ in their behaviour at infinity. These

solutions have an asymptotic expansion around z = ∞ that contains a WKB-piece

plus an asymptotic expansion in λ, and should thus be interpreted as perturbative

solutions that live on the spectral cover. We suggest that the asymptotic expansion of
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any solution can be turned into a fermionic state that captures the all-genus I-brane

partition function. This partition function thus depends on the choice of boundary

conditions near z∞.

Some of the WKB-factors will be exponentially suppressed near z∞, while others

grow exponentially. This depends on the specific region in this neighbourhood. The

lines that characterize the changing behaviour of the solutions Ψi are called Stokes

and anti-Stokes rays. Boundary conditions at infinity specify the solution up to a

Stokes matrix: a solution that decays in that region can be added at no cost.

This implies that the perturbative fermionic state we assign to a D-module depends

on the choice of boundary conditions. On the other hand, the D-module itself is

independent of any of these choices and thus in some sense contains non-perturbative

information and goes beyond the all-genus I-brane partition function. This agrees

with the discussion in [27]. Nonetheless, the focus in this paper is on the perturbative

information a D-module provides.

3 Matrix model geometries

Hermitian one-matrix models with potential W (x) =
∑d+1

j=0 ujx
j are defined through the

matrix integral

ZN =
1

vol(U(N))

∫
DM e−

1
λ
Tr W (M). (3.1)

In the large N limit the distribution of the eigenvalues λi of M on the real axis becomes

continuous and defines a hyperelliptic curve. This curve is called the spectral curve of the

matrix model.

In the ’t Hooft limit this matrix model has a dual description as the B-model topological

string on Calabi-Yau geometries of the form [23]

uv + y2 −W ′(x)2 + f(x) = 0, (3.2)

where f(x) = 4µ
∑d−1

j=0 bjx
j is a polynomial in x of degree d− 1. The hyperelliptic curve Σ

modeling the local threefold equals the matrix model spectral curve, with

f(x) =
4µ

N

N∑

i=1

W ′(x)−W ′(λi)

x− λi
. (3.3)

The potential W (x) determines the positions of the cuts, containing the non-normalizable

moduli, while the size of the cuts is determined by the polynomial f(x), comprising the

normalizable moduli b0, . . . , bd−2 and the log-normalizable modulus bd−1.

This duality may be generalized by starting with multi-matrix models, whose spectral

curve is a generic (in contrast to hyperelliptic) curve in the variables x and y.

The I-brane picture suggests that the full B-model partition function on these Calabi-

Yau geometries can be understood in terms of D-modules. Even better, we will find that

finite N matrix models are determined by an underlying D-module structure.
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In the past, as well as recently, these matrix models have been studied in great detail

in several contexts. Most importantly for us, it has been realized that a central role is

played by the string or Douglas equation

[P,Q] = λ. (3.4)

Here, P and Q are operators that implement multiplication with and differentiation with

respect to a spectral coordinate. In a double scaling limit P and Q turn into differential

operators. Physically, these critical models are known to describe minimal string theory.

Already in [24, 25] an attempt has been made to understand this string equation in

terms of a quantum curve in terms of the expansion in the parameter λ. In Moore’s

approach this surface seemed to emerge from an interpretation of the string equation as

isomonodromy equations.

In topological as well as minimal string theory a dominant role is played by holomorphic

branes: either topological B-branes [4] or FZZT branes [26, 27]. Their moduli space equals

the spectral curve, whereas the branes themselves may be interpreted as fermions on the

quantized spectral curve. In particular, for (p, 1) minimal models the so-called Lax operator

P has been interpreted as the quantization of the spectral curve. In these string theories it is

possible to compute correlation functions using a W1+∞-algebra [4, 28, 29] that implements

complex symplectomorphisms of the complex plane B in quantum theory as Ward identities.

These advances strongly hint at a fundamental appearance of D-modules in the theory

of matrix models. Indeed, this section unifies recent developments in matrix models in the

framework of section 2. Firstly, after a self-contained introduction in double scaled models

we uncover the D-module underlying the (p, 1)-models. In the second part of this section

we shift our focus to general Hermitian multi-matrix models, and unravel their D-module

structure.

3.1 Double scaled matrix models and the KdV hierarchy

Our first goal is to find the D-modules that explain the quantum structure of double scaled

Hermitean matrix models. This double scaling limit is a large N limit in which one also

fine-tunes the parameters to find the right critical behaviour of the multi-matrix model

potential. Geometrically the double scaling limit zooms in on some branch points of the

spectral curve that move close together. Spectral curves of double scaled matrix models

are therefore of genus zero and parametrized as

Σp,q : yp + xq + . . . = 0. (3.5)

The one-matrix model only generates hyperelliptic spectral curves, whereas the two-matrix

model includes all possible combinations of p and q. These double scaled multi-matrix

models are known to describe non-critical (c < 1) bosonic string theory based on the (p, q)

minimal model coupled to two-dimensional gravity [30–34]. This field is therefore known

as minimal string theory.

Zooming in on a single branch point yields the geometry

Σp,1 : yp = x,
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corresponding to the (p, 1) topological minimal model. This model is strictly not a well-

defined conformal field theory, but does make sense as 2d topological field theory. For

p = 2 it is known as topological gravity [14, 35–37].

All (p, q) minimal models turn out to be governed by two differential operators

P = (λ∂x)p + up−2(x)(λ∂x)p−2 + . . .+ u0(x), (3.6)

Q = (λ∂x)q + vq−2(x)(λ∂x)q−2 + . . .+ v0(x), (3.7)

of degree p and q respectively, which obey the string (or Douglas) equation

[P,Q] = λ. (3.8)

P and Q depend on an infinite set of times t = (t1, t2, t3, . . .), which are closed string

couplings in minimal string theory, and evolve in these times as

λ
∂

∂tj
P = [(P j/p)+, P ], (3.9)

λ
∂

∂tj
Q = [(P j/p)+, Q], (3.10)

The fractional powers of P define a basis of commuting Hamiltonians.2 This integrable

system is known as the p-th KdV hierarchy and the above evolution equations as the KdV

flows.

The differential operator Q is completely determined as a function of fractional powers

of the Lax operator P and the times t

Q = −
∑

j ≥ 1

j 6= 0 mod p

(
1 +

j

p

)
tj+pP

j/p
+ , (3.13)

This implies that when we turn off all the KdV times except for t1 = x and fix tp+1 to be

constant we find Q = λ∂x. This defines the (p, 1)-models

P = (λ∂x)p − x, Q = λ∂x. (3.14)

One can reach any other (p, q) model by flowing in the times t.

The partition function of the p-th KdV hierarchy is a tau-function as in equation (1.1).

The associated subspace W ∈ Gr may be found by studying the eigenfunctions ψ(t, z) of

the Lax operator P

Pψ(t, z) = zpψ(t, z). (3.15)

2Notice that L = P 1/p is a pseudo-differential operator, having an expansion

L = λ∂x + l0(x) + l1(x)(λ∂x)−1 + l2(x)(λ∂x)−2 + . . . , (3.11)

in negative powers of λ∂x. This extended notion of a derivative is defined by the Leibnitz rule

∂n
x f =

∞
X

k=0

 

n

k

!

(∂k
xf)∂n−k, (3.12)

for any n ∈ Z with
`

n
k

´

= n · . . . · (n − k + 1)/k!. It gives the derivatives with n < 0 an interpretation of

partial integration. L+ is the notation for the restriction to the positive powers of L.
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The so-called Baker function ψ(t, z) represents the fermionic field that sweeps out the

subspace W in the times t.

If we restrict to the (p, 1)-models the Baker function ψ(x, z) can be expanded in a

Taylor series

ψ(x, z) =

∞∑

k=0

vk(z)
xk

k!
. (3.16)

Since ψ(x, z) is an element ofW for all times, this defines a basis {vk(z)}k≥0 of the subspace

W. In fact, it is not hard to see that the (p, 1) Baker function is given by the generalized

Airy function

ψ(x, z) = e
pzp+1

(p+1)λ

√
zp−1

∫
dw e

(−1)1/p+1(x+zp)w

λp/p+1
+ wp+1

p+1 , (3.17)

which is normalized such that its Taylor components vk(z) can be expanded as

vk(z) = zk(1 +O(λ/zp+1)) (3.18)

The (p, 1) model thus determines the fermionic state

|W〉 = v0 ∧ v1 ∧ v2 ∧ . . . , (3.19)

where the vk(z) can be written explicitly in terms of Airy-like integrals (see [14] for a nice

review). The invariance under

zp · W ⊂ W (3.20)

characterizes this state as coming from a p-th KdV hierarchy. In the other direction, the

state |W〉 determines the Baker function (and thus the Lax operator) as the one-point

function

ψ(t, z) = 〈t|ψ(z)|W〉. (3.21)

In the dispersionless limit λ → 0 the derivative λ∂x is replaced by a variable d, and

the Dirac commutators by Poisson brackets in x and d. The leading order contribution to

the string equation is given by the Poisson bracket

{P0, Q0} = 1, (3.22)

where P0 and Q0 equal P and Q at λ = 0. The solution to this equation is

P0(d; t) = x (3.23)

Q0(d; t) = y(x; t) (3.24)

and recovers the genus zero spectral curve Σp,q of the double scaled matrix model,

parametrized by d. The KdV flows deform this surface in such a way that its singularities

are preserved. (See the appendix of [27] for a detailed discussion.)
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Note that Σp,q is not a spectral curve for the Krichever map. The Krichever curve is

instead found as the space of simultaneous eigenvalues of the differential operators

[P,Q] = 0, (3.25)

that is preserved by the KdV flow as a straight-line flow along its Jacobian. In fact, there

is no such Krichever spectral curve corresponding to the doubled scaled matrix model

solutions.

Wrapping an I-brane around Σp,q quantizes the semi-classical fermions on the spectral

curve Σp,q. The only point at infinity on Σp,q is given by x → ∞. The KdV tau-function

should thus be the fermionic determinant of the quantum state |W〉 that corresponds to

this D-module. In the next subsection we write down the D-module describing the (p, 1)

model and show precisely how this reproduces the tau-function using the prescription

outlined in section 2.

3.2 D-module for topological gravity

We are ready to reconstruct the D-module that yields the fermionic state |W〉 in equa-

tion (3.19). For simplicity we study the (2, 1)-model, associated to an I-brane wrapping

the curve

Σ(2,1) : y2 = x (with x, y ∈ C). (3.26)

Notice that this is an 2 : 1 cover over the x-plane. It contains just one asymptotic region,

where x→∞. Fermions on this cover will therefore sweep out a subspaceW in the Hilbert

space

W ⊂ H(S1) = C((y−1)), (3.27)

the space of formal Laurent series in y−1. The fermionic vacuum |0〉 ⊂ H(S1) corresponds

to the subspace

|0〉 = y1/2 ∧ y3/2 ∧ y5/2 ∧ . . . , (3.28)

which encodes the algebra of functions on the disk parametrized by y and with boundary at

y = ∞. Exponentials in y−1 represent non-trivial behaviour near the origin and therefore

act non-trivially on the vacuum state. In contrast, exponentials in y are holomorphic on

the disk and thus act trivially on the vacuum.

The B-field B = 1
λdx∧dy quantizes the algebra of functions on C

2 into the differential

algebra

Dλ = 〈x, λ∂x〉. (3.29)

Furthermore, it introduces a meromorphic connection 1-form A = 1
λydx on Σ(2,1), which

pushes forward to the rank two λ-connection

∇A = λ∂x −
(

0 1

x 0

)
(3.30)
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on the base, parametrized by x. We claim that the corresponding Dλ-module M,

generated by

P = (λ∂x)2 − x, (3.31)

describes the (2, 1) model. Let us verify this.

Trivializing the λ-connection ∇A in (3.30) implies finding a rank two matrix g(x) such

that

∇A = λ∂x − g′(x) ◦ g−1(x).

The columns of g define a basis of solutions Ψ(x) to the differential equation ∇AΨ(x) = 0.

They are meromorphic flat sections for ∇A that determine a trivialization of the bundle

near x =∞. As the connection ∇A is pushed forward from the cover, Ψ(x) is of the form

Ψ(x) =

(
ψ(x)

ψ′(x)

)
.

Independent solutions have different asymptotics in the semi-classical regime where

x → ∞. In the (2, 1)-model the two independent solutions ψ±(x) solve the differential

equation

Pψ±(x) = ((λ∂x)2 − x)ψ±(x) = 0. (3.32)

Hence these are the functions ψ+(x) = Ai(x) and ψ−(x) = Bi(x), that correspond semi-

classically to the two saddles

w± = ±√x/λ1/3

of the Airy integral

ψ(x) =
1

2πi

∫
dw e

− xw

λ2/3
+ w3

3 . (3.33)

The D-moduleM can be quantized into a fermionic state for any choice of boundary

conditions. Depending on this choice we find an O(x)-module W± spanned by linear

combinations of ψ±(x) and of ψ′
±(x). The fermionic state is generated by asymptotic

expansions in the parameter λ of these elements.

The saddle-point approximation around the saddle w± = ±√x/λ1/3 yields

ψ±(x) ∼ y−1/2 e∓
2y3

3λ


1 +

∑

n≥1

cnλ
n(±y)−3n




∼ y−1/2 e∓
2y3

3λ v0(±y).

To see the last step just recall the definition of v0(z) as being equal to the Baker function

ψ(x, z) evaluated at x = 0.3 A similar expansion can be made for ψ′(x) with the result

ψ′
±(x) ∼ y1/2 e∓

2y3

3λ v1(±y).
3Remark that x and z2 appear equivalently in ψ(x, z), while ψ(x) and ψ(x, z) only differ in the normal-

ization term in z.
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Note that both expansions in λ are functions in the coordinate y on the cover. They

contain a classical term (the exponential in 1/λ), a 1-loop piece and a quantum expansion

in λy−3. When we restrict to the saddle w =
√
x/λ1/3, these series blend the into the

fermionic state

|W+〉 = ψ+(y) ∧ ψ′
+(y) ∧ ypψ+(y) ∧ ypψ′

+(y) ∧ . . . . (3.34)

Does this agree with the well-known result (3.19)?

First of all, notice that the basis vectors xkψ(x) and xkψ′(x), with k > 0, contain in

their expansions the function vk(y) plus a sum of lower order terms in vl(y) (with l < k).

The wedge product obviously eliminates all these lower order terms. Secondly, the extra

factor y−1/2 factors just reminds us that we have written down a fermionic state.

Furthermore, the WKB exponentials are exponentials in y and thus elements of the

subgroup Γ+ of holomorphic functions that extend over a disc centered around y = 0,

whereas the expansions vk(y)/y
k are part of the subgroup Γ− of functions that extend

over a disc centered at y =∞. (The definition of these subgroups and their action on the

infinite Grassmannian can be found in appendix A.) Up to normal ordening ambiguities

this shows that the WKB part gives a trivial contribution to the fermionic state |W+〉. In

fact, the tau-function even cancels these ambiguities.

This shows that

|W+〉 = v0(y) ∧ v1(y) ∧ v2(y) ∧ . . . (3.35)

is indeed the same as in (3.19), when we change variables from z to y in that equation. Of

course, this doesn’t change the tau-function.

So our conclusion is that the D-module underlying topological gravity is the canonical

D-module

M =
Dλ

Dλ((λ∂x)2 − x) . (3.36)

This D-module gives the definition of the quantum curve corresponding to the (2, 1) model

and defines its quantum partition function in an expansion around λ = 0. Exactly the same

reasoning holds for the (p, 1)-model, where we find a canonical rank p connection on the

base. It would be nice to be able to write down a D-module for general (p, q)-models as well.

3.3 D-module for Hermitean matrix models

D-modules continue to play an important role in any Hermitean matrix model. In this

subsection we are guided by [38] and [39, 40] of Bertola, Eynard and Harnad.

We first summarize how the partition function for a 1-matrix model defines a tau-

function for the KP hierarchy. As we saw before, such a tau-function corresponds to a

fermionic state |W〉, whose basis elements we will write down. Following [38] we discover

a rank two differential structure in this basis, whose determinant reduces to the spectral

curve in the semi-classical limit. This D-module structure is somewhat more complicated

then the D-module we just found describing double scaled matrix models.
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We continue with 2-matrix models, based on [40]. Instead of one differential equation,

these models determine a group of four differential equations, that characterize the D-

module in the local coordinates z and w at infinity. The matrix model partition function

may of course be computed in either frame.

3.3.1 1-matrix model

Let us start with the 1-matrix model partition function (3.1). By diagonalizing the matrix

M the matrix integral may be reduced to an integral over the eigenvalues λi

ZN =

∫ ∏

i

dλi ∆(λ)2 e−
1
λ

P
i W (λi), (3.37)

with the Vandermonde determinant ∆(λ) =
∏

i<j(λi − λj) = det(λj−1
i ). The method of

orthogonal polynomials solves this integral by introducing an infinite set of polynomials

pk(x), defined by the properties

pk(x) = xk(1 +O(x−1)), (3.38)
∫
dx pk(x) pl(x) e

− 1
λ

W (x) = hkδk,l. (3.39)

The normalization of their leading term determines the coefficients hn ∈ C. Since the

Vandermonde determinant ∆(x) is not sensitive to exchanging its entries xj−1
i for pj−1(xi),

substituting ∆(x) = det(pj−1(xi)) turns the partition function into a product of coefficients

ZN = N !

N−1∏

k=0

hk. (3.40)

With the help of orthogonal polynomials the large N behaviour of ZN may be studied,

while keeping track of 1/N corrections.

In this discussion the orthogonal polynomials are relevant since they build up a basis

for the fermionic KP state. In an appendix of [38] it is shown that one should start at

t = 0 with a state |W0〉 generated by the polynomials pk(x) for k ≥ N

|W0〉 = pN (x) ∧ pN+1(x) ∧ pN+2(x) ∧ . . . . (3.41)

Notice that the vector pN (x) thus corresponds to the Fermi level and defines the Baker

function in the double scaling limit. Acting on them with the commuting flow generated by

Γ+ =
{
g(t) = e

P
n≥1

1
n

tnxn
}

(3.42)

defines a state |Wt〉 = |g(t)W0〉 at time t, which allows to compute a tau-function at time

t. If the coefficients uj in the potential W (x) are taken to be uj = u
(0)
j + tj, this τ -function

equals the ratio of the matrix model partition function ZN at time t divided by that at t = 0.

Multiplying the orthogonal polyonomials by exp(− 1
2λW (x)) doesn’t change the

fermionic state W = W0 in a relevant way, since this factor is an element of Γ+. To

find the right D-module structure, it is necessary to proceed with the quasi-polynomials

ψk(x) =
1√
hk
pke

− 1
2λ

W (x), (3.43)
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which form an orthonormal basis with respect to the bilinear form

(ψk, ψl) =

∫
dx ψkψl. (3.44)

It is possible to express both multiplication by x and differentiation with respect to x

in terms of the basis of ψm’s. The Weyl algebra 〈x, λ∂x〉 acts on these (quasi)-polynomials

by two matrices Q and P

xψk(x) =
∞∑

l=0

Qklψl (3.45)

λ∂xψk(x) =
∞∑

l=0

Pklψl(x), (3.46)

and the space of quasi-polynomials ψk is thus a Dλ-module.

Notice that we anticipate that the D-module possesses a rank two structure, since

we started with a flat connection A = 1
λydx on an I-brane wrapped on a hyper-elliptic

curve. Now, the matrices Q and P only contain non-zero entries in a finite band around

the diagonal. The action of ∂x on the semi-infinite set of ψk(x)’s can therefore indeed be

summarized in a rank two differential system ([38] and references therein)

λ∂x

[
ψN (x)

ψN−1(x)

]
= AN (x)

[
ψN (x)

ψN−1(x)

]
, (3.47)

where AN (x) is a rather complicated 2 × 2-matrix involving the derivative W ′ of the

potential and the infinite matrix Q:

AN (x) =
1

2
W ′(x)

[
−1 0

0 1

]
+ γN

[
−W̃ ′(Q,x)N,N−1 W̃ ′(Q,x)N,N

−W̃ ′(Q,x)N−1,N−1 W̃
′(Q,x)N−1,N

]
, (3.48)

with

W̃ ′(Q,x) =

(
W ′(Q)−W ′(x)

Q− x

)
and γN =

√
hN

hN−1
. (3.49)

Equation (3.47) is thus the rank two λ-connection defining the Dλ-module structure on W
that we were searching for! As a check, the determinant of this connection reduces to the

spectral curve in the semiclassical, or dispersionless, limit [38]:

ΣN : 0 = det (y12×2 −AN (x)) (3.50)

= y2 −W ′(x)2 + 4λ

N−1∑

j=0

(
W ′(Q)−W ′(x)

Q− x

)

jj

(3.51)

(To make the coefficients in the above equation agree with (3.2), we rescaled y 7→ y/2.) In

conclusion we found the D-module structure underlying Hermitean 1-matrix models.
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Remark that in the N → ∞ limit we expect that the hyperelliptic curve defining the

B-model Calabi-Yau (3.2) emerges from ΣN . Indeed, in the ’t Hooft limit Q corresponds

classically to the coordinate x on the curve, whereas quantum-mechanically it is an operator

whose spectrum is described by the eigenvalues λi of the infinite matrix M . In the large

N limit we can therefore replace the matrix Qij in the definition for ΣN by λiδij .

Note as well that we can rewrite the rank two connection for the vector (ψN , ψ
′
N )t as

λ∂x

[
ψN (x)

ψ′
N (x)

]
=

[
0 1

− det(AN (x)) + λY λZ

] [
ψN (x)

ψ′
N (x)

]
, (3.52)

at least when tr(AN (x)) = 0, with Y and Z some derivatives of entries of AN (x). This

brings the λ-connection in the familiar form of section 2. In the next subsection we clarify

the differential structure in a simple example.

3.3.2 2-matrix model

Let us first say a few words on the D-module structure underlying multi-matrix models,

which capture spectral curves of any degree in x and y [39, 40]. The partition function for

a two-matrix model, with two rank N matrices M1 and M2, is

ZN =

∫
DM1DM2 e

− 1
λ
Tr(W1(M1)+W2(M2)−M1M2), (3.53)

where W1 and W2 are two potentials of degree d1 + 1 and d2 + 1. Choosing W2 to be

Gaussian reduces the 2-matrix model to a 1-matrix model. The 2-matrix model is solved

by introducing two sets of orthogonal polynomials πk(x) and σk(y). Again it is convenient

to turn them into quasi-polynomials

ψk(x) = πk(x)e
− 1

λ
W1(x), φk(y) = σk(y)e

− 1
λ

W2(y). (3.54)

obeying the orthogonality relations
∫
dxdy ψk(x)φl(y)e

xy
λ = hkδkl. (3.55)

Multiplying with or taking a derivative with respect to either x or y yields (just) two

operators Q and P (and their transposes because of (3.55)), that form a representation of

string equation [P,Q] = 0. Since Q is only non-zero in a band around the diagonal of size

d2 + 1 and P of size d1 + 1, the quasi-polynomials may be folded into the vectors

~ψ = [ψN , . . . , ψN−d2 ]
t, ~φ = [φN , . . . , φN−d1 ]

t. (3.56)

Any other quasi-polynomial can be expressed as a sum of entrees of these vectors, with co-

efficients in the polynomials in x and y. These vectors are called windows. The differential

operators λ∂x and λ∂y respect them, so that their action is summarized in a rank d2 + 1

resp. rank d1 + 1 λ-connection

λ∂x
~ψ(x) = A1(x)~ψ(x), λ∂y

~φ(y) = A2(y)~φ(x). (3.57)
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This we interpret as two representations of the Dλ-module underlying 2-matrix models.

Indeed, [39] proves that the determinant of both differential systems equals the same spec-

tral curve Σ, in the limit λ → 0 when we replace λ∂x → y and λ∂y → x. The defining

equation of Σ is of degree d1 + 1 in x and of degree d2 + 1 in y.

In fact, it is useful to introduce two more semi-infinite sets of quasi-polynomials ψ
k
(y)

and φ
k
(x), as the Fourier transforms of ψk(x) and φk(y) respectively. The action of the

Weyl algebra on them may be encoded as the transpose of the above linear systems. The

full system can therefore be summarized by (compare to (4.7))

x-axis : {ψk(x), φk
(x)}, ∇λ = λ∂x −A1(x), (3.58)

y-axis : {φk(y), ψk
(y)}, ∇λ = λ∂y −A2(y).

Moreover, the matrix model partition function can be rewritten as a fermionic correlator

in either local coordinate

ZN =

∫ ∏

i

dλ1
i dλ

2
i ∆(λ1)∆(λ2) e−

1
λ

P
i(W1(λ1

i )+W2(λ2
i )−λ1

i λ2
i (3.59)

= N !

N−1∏

k=0

〈ψk(x)|φk
(x)〉 = N !

N−1∏

k=0

〈φk(y)|ψk
(y)〉

with respect to the bilinear form in (3.44).

Furthermore, Bertola, Eynard and Harnad study the dependence on the parameters

u
(1)
j and u

(2)
j appearing in the potentials W1 and W2. Deformations in these parameters

leave the two sets of quasi-polynomials invariant as well. On ~ψ and ~φ they act as matrices

U
(1)
j and U

(2)
j . This yields the 2-Toda system

∂
u
(1)
j

Q = −[Q,U
(1)
j ] ∂

u
(1)
j

P = −[P,U
(1)
j ] (3.60)

∂
u
(2)
j

Q = [Q,U
(2)
j ] ∂

u
(2)
j

, P = [P,U
(1)
j ]. (3.61)

In [39] it is proved that the linear differential systems (3.57) are compatible with these

deformations, so that the parameters u
(1)
j and u

(2)
j in fact generate isomonodromic de-

formations. This shows precisely how the non-normalizable parameters in the potential

respect the central role of the Dλ-module (3.57) in the 2-matrix model.

3.4 Gaussian example

Let us consider the Gaussian matrix model with quadratic potential

W (x) =
x2

2
, (3.62)

that is associated to the spectral curve

y2 = x2 − 4µ2 (3.63)

in the large N limit. In the Dijkgraaf-Vafa correspondence this matrix model is thus dual

to the topological B-model on the deformed conifold geometry.
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The Hermite functions

ψλ
k (x) =

1√
hk
e−

x2

4λHλ
k (x), with

Hλ
k (x) = λk/2Hk

(
x√
λ

)
= xk

(
1 +O

(√
λ

x

))
,

form an orthogonal basis for this model. Their inner product is given by

∫
dx

2π
ψλ

k (x)ψλ
l (x) = λkk!

√
λ

2π
δkl ⇒ hk = λkk!

√
λ

2π
.

The partition function of the Gaussian matrix model can be computed as a product of the

normalization constants hk. Using the asymptotic expansion of the Barnes function G2(z),

that is defined by G2(z + 1) = Γ(z)G2(z), the free energy can be expanded in powers of λ

FN = log

N−1∏

k=1

hk = log

(
G2(N + 1)

λN2/2

(2π)N/2

)
(3.64)

=
1

2

(µ
λ

)2
(

log µ− 3

2

)
− 1

12
log µ+ ζ ′(−1) +

∞∑

g=2

B2g

2g(2g − 2)

(
λ

µ

)2g−2

,

where B2g are the Bernoulli numbers and µ = Nλ.

The derivatives of the Hermite functions are related as

λ
d

dx

[
ψλ

k (x)

ψλ
k−1(x)

]
=

[
−x/2

√
kλ

−
√
kλ x/2

] [
ψλ

k (x)

ψλ
k−1(x)

]
. (3.65)

So, according to the previous discussion, the Dλ-module connection is given by

λ
d

dx
−AN (x) = λ

d

dx
+

[
x/2 −

√
Nλ√

Nλ −x/2

]
. (3.66)

Here we choose ~ψ = [ψN , ψN−1]
t as window. In the large N limit the determinant of this

rank two differential system indeed yields the spectral curve (3.63) with µ = λN .

Instead of using ψλ
k and ψλ

k−1 as a basis, we can also write down the differential system

for ψλ
k and its derivative ψ′λ

k(x) = λ∂xψ
λ
k (x). Since this derivative is a linear combination

of ψλ
k−1 and xψk(x) (as we saw above), it is equivalent to use this basis to generate the

fermionic state W. We compute that

λ
d

dx

[
ψλ

N (x)

ψ′λ
N (x)

]
=

[
0 1

x2 − λN − λ/2 0

][
ψλ

N (x)

ψ′λ
N (x)

]
. (3.67)

The spectral curve in the large N limit hasn’t changed. Notice that in this form it is clear

that the rank 2 connection is the push-forward of the connection A = 1
λydx on the spectral

curve y2 = x2 − 4µ to the C-plane, up to some λ-corrections.

In the double scaling limit the limits N → ∞ and λ → 0 are not independent as in

the ’t Hooft limit, but correlated, such that the higher genus contributions to the partition
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function are taken into account. In terms of the Gaussian spectral curve this limit implies

that one zooms in onto one of the endpoints of the cuts. The orthogonal function ψλ
N (x)

turns into the Baker function ψ(x) of the double scaled state W.

In the Gaussian matrix model this is implemented by letting x→ √µ+ ǫx, where ǫ is

a small parameter. So the double scaled spectral curve reads

y2 = x, (3.68)

while the differential system reduces to

λ
d

dx

[
ψ(x)

ψ′(x)

]
=

[
0 1

x 0

][
ψ(x)

ψ′(x)

]
. (3.69)

This is indeed the D-module corresponding to the (2, 1)-model.

4 Conifold and c = 1 string

The free energy (3.64) of the Gaussian matrix model pops up in the theory of bosonic c = 1

strings. This c = 1 string theory is formulated in terms of a single bosonic coordinate X,

that is compactified on a circle of radius r in the Euclidean theory. A critical bosonic string

theory (with c = 26) is obtained by coupling the above CFT to a Liouville field φ. The

Liouville field corresponds to the non-decoupled conformal mode of the worldsheet metric.

The local worldsheet action reads

1

4π

∫
d2σ

(
1

2
(∂X)2 + (∂φ)2 + µe

√
2φ +

√
2φR

)
,

where the coupling µ is seen as the worldsheet cosmological constant. In the Euclidean

model there are only two sets of operators, that describe the winding and momenta modes

of the field X. These vertex and vortex operators can be added to the action as marginal

deformations with coefficients tn and t̃n.

Just like in c < 1 minimal string theories (the (p, q)-models of last section), the parti-

tion function of the c = 1 string is first computed using a dual matrix model description [41].

At the self-dual radius r = 1 it agrees with the Gaussian matrix model partition function

in equation (3.64), where λ now plays the role of the c = 1 string coupling constant.

The matrix model dual to the c = 1 string is called matrix quantum mechanics. This

duality is reviewed in much detail in e.g. [42–44]. Matrix quantum mechanics is described

by a gauge field A and a scalar field M that are both N × N Hermitean matrices. The

momentum modes of the c = 1 string correspond to excitations of M , whereas the winding

modes are excitations of A. If we focus on the momentum modes, the (double scaled)

matrix model is governed by the Hamiltonian

H =
1

2
Tr

(
−λ2 ∂2

∂M2
−M2

)
.
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Let us focus on solutions that depend purely on the eigenvalues λi of M . The Hamil-

tonian may be rewritten in terms of the eigenvalues as

H =
1

2
∆−1(λ)

∑

i

(
−λ2 ∂

2

∂λ2
i

− λ2
i

)
∆(λ),

where ∆(λ) is Vandermonde determinant. It is convenient to absorb the factor ∆ in the

wavefunction solutions, making them anti-symmetric. Hence, the singlet sector of matrix

quantum mechanics describes a system of N free fermions in an upside-down Gaussian

potential.

To describe the partition function of the c = 1 model it is convenient to move over to

light-cone coordinates λ± = λ ± p, so that elementary excitations of the c = 1 model are

represented as collective excitations of free fermions near the Fermi level

λ+λ− = µ. (4.1)

When we restrict to λ± > 0, scattering amplitudes can be computed by preparing asymp-

totic free fermionic states 〈t̃| and |t〉 at the regions where one of λ± becomes very large.

In this picture the generating function of scattering amplitudes has a particularly

simple form. It can be formulated as a fermionic correlator [45]

Z = 〈t|S|t̃〉, (4.2)

where the fermionic scattering matrix S ∈ GL(∞,C) was first computed in [46]. Moreover,

in [47] (see also Chapter V of [44]) and later in [4] it is noticed that S just equals the Fourier

transformation

(Sψ)(λ−) =

∫
dλ+ e

1
λ

λ−λ+ψ(λ+). (4.3)

In the next section we show that this follows naturally from the perspective of D-modules.

The result (4.2) shows that c = 1 string theory is an integrable system, just like the

(p, q)-models in the last section. Since it depends on two sets of times this integrable

system is not a KP system. Instead, the above expression defines a tau function of a

2-Toda hierarchy.

Notice that the Fermi level (4.1) is a real cycle on the complex curve

Σ : zw = µ, (4.4)

which is a different parametrization of the spectral curve y2 = x2 − µ of the Gaussian 1-

matrix model. In the revival of this subject a few years ago, a number of other matrix model

interpretations have been found. This includes a duality with the Hermitean 2-matrix

model, which makes the 2-Toda structure manifest [48], a Kontsevich-type model [49, 50]

at the self-dual radius, and a so-called normal matrix model [51, 52], that parametrizes the

dual real cycle on the complex curve Σ. Let us also mention that the well-known duality of

the c = 1 string with the topological B-model on the deformed conifold [53], that follows,

with a detour, from the more general Dijkgraaf-Vafa correspondence.
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4.1 D-module description of the c = 1 string

This paragraph reproduces the c = 1 partition function (4.2) from a D-module point of

view. The discussion continues the line of thought in section 5.5 of [4] and in [5].

As we have just seen, the c = 1 string is geometrically characterized by the presence

of a holomorphic curve in C× C defined by

Σc=1 : zw = µ.

Let us consider an I-brane wrapping the curve Σc=1. When we assume z as local coordinate

the curve quantizes into the differential operator

P = −λz∂z − µ. (4.5)

It is amusing that the differential operator P appears as a canonical example in the theory

of D-modules (see e.g. [11]) in the same way as the c = 1 string is an elementary example

of a string theory.

We recognize this example from section 2, where a D-module was associated to the

differential operator P . However, now it is important not to forget that there are two

asymptotic points z∞ and w∞. Let us call their local neighbourhoods Uz and Uw, as local

coordinates are z and w respectively. At both asymptotic points the I-brane fermions

will sweep out an asymptotic state. The quantum partition function should therefore be

constructed from two quantum states.

Before constructing these states for general λ, let us first consider the semi-classical

limit λ → 0. In this limit the I-brane degrees of freedom are just conventional chiral

fermions on Σc=1. The genus 1 part F1 of the free energy is obtained as the partition

function of these semi-classical fermions. It can be computed by assigning the Dirac vacuum

|0〉z = z1/2 ∧ z3/2 ∧ z5/2 ∧ . . .

to Uz and likewise the conjugate state

|0〉w = w1/2 ∧ w3/2 ∧w5/2 ∧ . . .

to Uw. To compare these states, we need an operator S that relates z to 1/z. The

semi-classical partition can then be computed as a fermionic correlator w〈0|S|0〉z , with

the result that

eF1 = w〈0|S|0〉z =
∏

k≥0

µk+1/2. (4.6)

Using ζ-function regularization we find that this expression yields the familiar answer

F1 = − 1
12 log µ.

In order to go beyond 1-loop, we should think in terms of D-modules. Let us for

a moment not represent their elements in terms of differential operators yet. In both

asymptotic regions we then find the D-modules

Uz : M = D/DP, with P = ẑŵ − µ,
Uw : M = D/DP, with P = ŵẑ − µ+ λ.
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Notice that the Weyl algebra D = 〈ẑ, ŵ〉, with the relation [ẑ, ŵ] = λ, acts on mono-

mials zk and wk in the moduleM as

ẑ(zk) = zk+1ẑ(wk) =

(
λ∂w +

µ− λ
w

)
wk

ŵ(zk) =
(
−λ∂z +

µ

z

)
zkŵ(wk) = wk+1.

Here, we just used the relation DP ≡ 0 and wrote the elements in the basis {zk, wk | k ∈
Z} of M. A basis of a representation of M on which ẑ and ŵ just act by multiplication

by z resp. differentiation with respect to z is given by

vz
k(z) = zk · z−µ/λ,

vw
k (z) =

∫
dw e−zw/λ wk−1 · wµ/λ.

Indeed, differentiation with respect to z clearly gives the same result as applying ŵ. More-

over, multiplying vw
k by z gives

z · vw
k (z) = λ

∫
dw e−zw/λ ∂

∂w

(
wk−1+µ/λ

)
= (µ+ λ(k − 1))vw

k−1.

Similarly, in the module M one can verify that

ŵ(wk) = wk+1ŵ(zk) =
(
−λ∂w +

µ

w

)
wk

ẑ(wm) =

(
λ∂z +

µ− λ
z

)
zkẑ(zk) = zk+1.

Hence in the representation ofM defined by

vw
k (w) = wk−1 · wµ/λ,

vz
k(w) =

∫
dz ezw/λ zk · z−µ/λ,

w and ∂w act in the usual way.

Since we moved over to representations of the D-module where the differential operator

acts as we are used to, the S transformation, that connects the Uz and the Uw patch and

thereby exchanges ẑ and ŵ, must be a Fourier transformation. This is clear from the

expressions for the basis elements w and w̃: S interchanges vz
k(z) with vz

k(w), and vw
k (z)

with vw
k (w). In total we thus find the D-module elements

Uz : vz
k, v

w
k (4.7)

Uw : vw
k , v

z
k

Representing the D-module in terms of differential operators of course gives the same

result. A fundamental solution of PΨ(z) = 0 is Ψ(z) = z−µ/λ, so that acting with D =

〈z, ∂z〉 on Ψ(z) gives the elements vz
k inM. Likewise, we reconstruct the elements vw

k from

the fundamental solution of PΨ(w) = 0. Since D = 〈z, ∂z〉 and D = 〈w, ∂w〉 are related by
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a Fourier transform, an element vk of the D-module in one asymptotic region is represented

by its Fourier transform in the opposite region. This reproduces all elements in (4.7).

A λ-expansion of the D-module element vz
k, using for example the stationary phase

approximation, yields as zeroth order contribution

eµ/λ
( µ
w

)k−µ/λ
,

while the subdominant contribution is given by
√
−2πλµ

w2
.

So in total we find that

vz
k(w) =

√
−2πλ (µ/e)−µ/λ wµ/λ µk+1/2 w−k−1 ψqu

(µ
w

)
.

This summarizes the contributions that we found before: the genus zero wµ/λ and genus

one µk+1/2w−k−1 results, plus the higher order contributions that are collected in ψqu.

The all-genus partition function Z of this I-brane system can be easily computed

exactly. Schematically it equals the correlation function

Zc=1 = 〈Ww|Sµ|Wz〉,

where the S-matrix implements the Fourier transform between the two asymptotic patches.

Similar to the arguments in (the appendices of) [47] and [4]4 we find that the result repro-

duces the perturbative expansion of the free energy as in equation (3.64). For completeness

let us review the argument by comparing vz
k(w) with vw

k (w).

Notice that vz
k(w) almost equals the gamma-function Γ(z) =

∫∞
0 dt e−t tz−1. Indeed,

let us take the integration contour from −i∞ to i∞ and choose the cut of the logarithm

to run from 0 to ∞. Then

vz
k(w) =

(
λ

w

)∫ i∞

−i∞
dz′ ez

′

(
λz′

w

)k−µ
λ

=

(
iλ

w

)k+1−µ
λ
[∫ 0

−∞
dz′ eiz

′

e(k−
µ
λ

) log z′ +

∫ ∞

0
dz′ eiz

′

e(k−
µ
λ
) log z′

]

=

(
iλ

w

)k+1−µ
λ
[∫ 0

i∞
dz′ eiz

′

e(k−
µ
λ
) log z′ +

∫ i∞

0
dz′ eiz

′

e(k−
µ
λ

) log z′
]
,

where we moved the contour along the positive imaginary axis. A change of variables and

using that log(iz′− ǫ) = log z′− 3iπ/2 and log(iz′ + ǫ) = log z′ + iπ/2, for ǫ small and real,

then yields

vz
k(w) =

(
iλ

w

)k+1−µ
λ [
eπi(k+1−µ

λ
)/2 − e−3πi(k+1−µ

λ
)/2
]
Γ
(
k + 1− µ

λ

)
.

4The argument presented in the appendix of [4] is not fully correct. The proper argument (as shown

below) recovers a slightly different prefactor in front of the Gamma-function, related to the doubling in the

appendix of [47].
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which is the same as the theory of type II result in the appendix of [47]. Ignoring the

exponential factor (which will only play a role non-perturbatively), we find that the free

energy F equals the sum

F (λ, µ) =
∑

k≥0

(
k + 1− µ

λ

)
log λ+ log Γ

(
k + 1− µ

λ

)
.

It obeys the recursion relation

F
(
λ, µ+

λ

2

)
−F

(
λ, µ− λ

2

)
=

(
1

2
− µ

λ

)
log λ+ log Γ

(
1

2
− µ

λ

)
.

which is known to be fulfilled by the c = 1 string (see for example appendix A in [55]),

up to a term −1
2 log(2πλ) that can be taken care of by normalizing the functions vk. The

same result is found when analyzing the function vk.

This concludes our discussion of the c = 1 string. It is the first D-module example

where we see how to handle curves with two punctures. The physical interpretation of the I-

brane set-up furthermore provides a check of our formalism. Moreover, this example agrees

with the claim that the D-module partition function should be invariant under different

parametrizations. Both the representation as c = 1 curve, Σc=1 : zw = µ, and that as a

Gaussian matrix model spectral curve, Σmm : y2 = x2+µ, yield the same partition function.

5 Seiberg-Witten geometries

Many times N = 2 supersymmetric gauge theories proved to provide an important theo-

retical framework for testing new ideas in physics. It should be fair to say that the most

important advances in this context are the solution of Seiberg and Witten in terms of a

family of hyperelliptic curves, as well as the explicit solution of Nekrasov and Okounkov in

terms of two-dimensional partitions. In what follows we will provide a novel perspective

on these results, by wrapping an I-brane around a Seiberg-Witten curve. The B-field on

the I-brane quantizes the curve, and a fermionic state is obtained from the correspond-

ing D-module. As we will see, this state sums over all possible fermion fluxes through

the Seiberg-Witten geometry, and may be interpreted as a sum over geometries. First we

briefly review the Seiberg-Witten and Nekrasov-Okounkov approaches.

The solution of the U(N) Seiberg-Witten theory is encoded in its partition function

Z(ai, λ,Λ), which is a function of the scale Λ, the coupling λ and boundary conditions for

the Higgs field denoted by ai for i = 1, . . . , N (with
∑

i ai = 0 for the SU(N) theory). The

partition function is related to the free energy F as

Z(ai, λ,Λ) = eF = e
P∞

g=0 λ2g−2Fg(ai,Λ). (5.1)

In the above expansion F0 is the prepotential which contains in particular an instanton

expansion in powers of Λ2N , while higher Fg’s encode gravitational corrections. The U(N)

Seiberg-Witten solution identifies the ai’s and the derivatives of the prepotential 1
2πi

∂F0
∂ai

as

the Ai and Bi periods of the meromorphic differential

ηSW =
1

2πi
v
dt

t
(5.2)
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on the hyperelliptic curve

ΣSW : ΛN (t+ t−1) = PN (v) =

N∏

i=1

(v − ui). (5.3)

Despite great conceptual advantages, extracting the instanton expansion of the prepotential

from this description is a non-trivial task. However, an explicit formula for the partition

function, encoding not only the full prepotential but also entire expansion in higher Fg

terms, was postulated by Nekrasov in [54]. Subsequently this formula was derived rigor-

ously jointly by him and Okounkov in [55] and independently by Nakajima and Yoshioka

in [56, 57]. For U(N) theory this partition function is given by a sum over N partitions
~R = (R(1), . . . , R(N))

Z(ai, λ,Λ) = Zpert(ai, λ)
∑

~R

Λ2N |~R|µ2
~R
(ai, λ), (5.4)

where

µ2
~R
(ai, λ) =

∏

(i,m)6=(j,n)

ai − aj + λ(R(i),m −R(j),n + n−m)

ai − aj + λ(n−m)
, (5.5)

Zpert(ai, λ) = exp
(∑

i,j

γλ(ai − aj,Λ)
)
. (5.6)

The function γλ(x,Λ) is related to the free energy of the topological string theory on the

conifold, and its various representations and properties are discussed extensively in [55] in

appendix A. The vevs ai are quantized in terms of λ, so that for pi ∈ Z,

ai = λ(pi + ρi), ρi =
2i−N + 1

2N
. (5.7)

The approach of [54] is based on the localization technique in presence of the so-called

Ω-background. In general this background provides a two-parameter generalization of the

prepotential: the coupling λ is replaced by two geometric parameters ǫ1 and ǫ2. The

prepotential, as given above, is recovered for λ = ǫ1 = −ǫ2. By the duality web of refer-

ence [5]supersymmetric gauge theories are related to intersecting brane configurations. The

Nekrasov-Okounkov solution must therefore have an interpretation in terms of a quantum

Seiberg-Witten curve, where λ plays the role of the non-commutativity parameter.

5.1 Dual partition functions and fermionic correlators

For a relation to the I-brane partition function (2.12), it is necessary to consider the dual

of the partition function (5.4). This is introduced in [55] as the Legendre dual

ZD(ξ, p, λ,Λ) =
∑

P
i pi=p

Z(λ(pi + ρi), λ,Λ) e
i
λ

P
j pjξj . (5.8)

An important observation of Nekrasov and Okounkov is that this dual partition function

can be elegantly written as a free fermion correlator. This is a consequence of the correspon-

dence between fermionic states and two-dimensional partitions described in appendix A.
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For U(1) there is no difference between the partition function and its dual and both can

be written as

ZD
U(1)(p, λ,Λ) = 〈p|e− 1

λ
α1Λ2L0e

1
λ

α−1 |p〉, (5.9)

where |p〉 is the fermionic vacuum whose Fermi level is raised by p = a/λ units and L0

measures the energy of the state. A version of the boson-fermi correspondence implies the

following decomposition

e
1
λ

α−1 |p〉 =
∑

R

µR

λ|R| |p;R〉 (5.10)

in terms of partitions R, where µR is the Plancherel measure

µR =
∏

1≤m<n<∞

Rm −Rn + n−m
n−m =

∏

�∈R

1

h(�)
(5.11)

which can be written equivalently as a product over hook lengths h(�).

For general N the dual partition function (5.8) looks very similar

ZD
U(N)(ξi; p, λ,Λ) = 〈p|e−

1
λ̃

α1eHξi Λ2L0e
1
λ̃

α−1 |p〉, (5.12)

however, now this expression is obtained by blending N free fermions ψ(i) into a single

fermion ψ, as explained in appendix A. In particular Hξi
= 1

λ

∑
r ξ(r+1/2) mod Nψrψ

†
−r,

while the bosonic mode α−1 arises from the bosonization of the single blended fermion ψ.

In formula (5.10) the Plancherel measure of a blended partition R can be decomposed into

N constituent partitions as

µR =
√
Zpert(ai, λ)µ~R(ai, λ), (5.13)

with µ~R
and Zpert given in (5.5) and (5.6). When read in terms of the N twisted fermions

ψ(i), the correlator (5.12) involves a sum over the individual fermion charges pi.

Our aim in this section is to derive the above fermionic expressions for the dual partition

function from the perspective of this paper. In the next subsections we will see how first

quantizing the Seiberg-Witten curve in terms of a D-module elegantly reproduces to the

fermionic correlators (5.9) and (5.12).

5.2 Fermionic correlators as D-modules

In this section we compute the I-brane partition function for U(N) Seiberg-Witten geome-

tries. We start with the simpler U(1) and U(2) examples and then generalize this to U(N).

As a first principal step we notice that the U(N) Seiberg-Witten geometry

ΣSW : ΛN (t+ t−1) = PN (v) =

N∏

i=1

(v − ui), (5.14)

can be rewritten as

(PN (v) − ΛN t)(PN (v)− ΛN t−1) = Λ2N . (5.15)
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Figure 4. The right-half Seiberg-Witten geometry is distorted around the asymptotic point (t →
0, v →∞). A fermion field on the quantized curve can be described as an element of a D-module,

and sweeps out a state |W〉 at the S1-boundary where t→∞.

This shows that the Seiberg-Witten surface may be seen as a transverse intersection of a

left and a right half-geometry defined by

ΣL : ΛN t = PN (v) resp. ΣR : ΛN t−1 = PN (v), (5.16)

which are connected by a tube of size Λ2N . The left geometry parametrizes the asymptotic

region where both t → ∞ and v → ∞, whereas the right geometry describes the region

where v →∞ while t→ 0. This is illustrated in figure 4.

Next we wish to associate a subspace in the Grassmannian to both half Seiberg-Witten

geometries. This will be swept out by a fermion field on the curve that couples to the

holomorphic part of the B-field

B =
1

λ
ds ∧ dv (5.17)

Since this B-field quantizes the coordinate v into the differential operator λ∂s, any subspace

in this section is a D-module for the differential algebra

DC∗ = 〈t, λ∂s〉. (5.18)

The free fermions on the Seiberg-Witten curves couple to the gauge field A = 1
ληSW .

This determines their flux through the Ai cycles of the Seiberg-Witten geometry as

pi =
1

λ

∫

Ai

ηSW . (5.19)

The flux leaking through infinity is p =
∑N

i=1 pi, which is zero for SU(N). A fermion field

with fermion flux p at infinity, will sweep out a fermionic state in the pth Fock space. The
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parameters ξi =
∫
Bi
ηSW are dual to the fermion fluxes. Notice that in the perturbative

regime pi can be written as a λ-expansion

λpi = ui +O(λ). (5.20)

Since both half Seiberg-Witten geometries are distorted near v = ∞ (see figure 4),

while a fermionic subspace can be read off in the neighbourhood where v is finite, both

half-geometries parametrize a subspace of C((v)):

ΣL, ΣR ⊂ C((v)). (5.21)

The trivial geometry corresponds to a disk with origin at v = ∞, whereas its boundary

encloses the point v = 0. The vacuum state is therefore given by

|0〉 = v−1/2 ∧ v−3/2 ∧ v−5/2 ∧ . . . . (5.22)

Exponentials in v−1 act trivially (as pure gauge transformations in Γ+) on this state,

whereas exponentials in v transform the vacuum into a non-trivial fermionic state.

Finally, the partition function is recovered by contracting the left and the right

fermionic state. Note that s = − log t is a local spatial coordinate on both half Seiberg-

Witten geometries, which tends to −∞ on the left and to +∞ on the right. This makes a

huge difference with the c = 1 geometry discussed in [4, 5], where the local coordinate is the

exponentiated coordinate, which on the left is the inverse of that on the right. While in that

example a non-trivial S-matrix is required to identify the left and right half-geometries,

here we can just glue the fermionic states using the classic Hamiltonian L0.

Let us now find these quantum states!

5.2.1 U(1) theory

The U(1) Seiberg-Witten curve is embedded in C
∗ × C as

Λ(t+ t−1) = v − u, (t = es ∈ C
∗, v ∈ C) (5.23)

where u ∈ C is a normalizable mode. This geometry may be factorized into a left and a

right geometry

ΣL : v = Λt+ u and ΣR : v = Λt−1 + u, (5.24)

that intersect transversely with degeneration parameter Λ2.

The symplectic form B = 1
λds ∧ dv quantizes both half geometries into Dλ-modules

on a punctured disc C
∗
t , parametrized by t. We claim that these are characterized by the

U(1) λ-connections

∇L = −λt∂t + Λt+ λp and ∇R = λt∂t + Λt−1 + λp. (5.25)

These are just the canonical quantizations of the classical Seiberg-Witten geometries, where

additionally u is quantized into λp, with p ∈ Z. They yield the linear differential equations

PLψ
λ
L(t; p) = (−λt∂t + Λt+ λp)ψλ

L(t; p) = 0, (5.26)

PRψ
λ
R(t; p) =

(
λt∂t + Λt−1 + λp

)
ψλ

R(t−1; p) = 0. (5.27)
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Figure 5. Contracting two Seiberg-Witten half-geometries yields the Nekrasov-Okounkov partition

function corresponding to a fermion flux p through the surface.

The Dλ-modules are of the canonical form

ML/R =
Dλ

Dλ · PL/R
, (5.28)

and are generated by the solutions

ψλ
L(t; p) = tpe

Λ
λ

t and ψλ
R(t; p) = t−pe

Λ
λ

t−1
. (5.29)

From the discussion in appendix A it follows that the factor t−p acts on the right

Dirac vacuum by raising the Fermi level into |p〉, while the exponent of t−1 translates

to the exponentiated α−1 operator. With an analogous statement for the left state, the

modulesML/R translate into the Bogoliubov states

〈WL| = 〈p|e
Λ
λ

α1 and |WR〉 = e
Λ
λ

α−1 |p〉. (5.30)

The U(1) Nekrasov-Okounkov partition function with fermion flux p (see figure 5) is

found by contracting the above fermion states

Zλ
NO(p; Λ) = 〈p|eΛ

λ
α1e

Λ
λ

α−1 |p〉. (5.31)

The factors Λ can be pulled out of the exponentials by using the commutator [L0, α±1] =

α±1. Up to an extra factor Λ−p2/2 we find that

Zλ
NO(p; Λ) ∼ 〈p|e

α1
λ Λ2L0e

α−1
λ |p〉. (5.32)

This has a nice geometrical explanation, since the left and right half geometries are con-

nected by a tube of size Λ2 as in the factorized form of the complete U(1) geometry. The

factor Λ2L0 is the Hamiltonian that describes the propagation of the fermion field along

the tube. There is no need to generalize this standard-CFT factor, since both patches are

described by the same space-coordinate s.

We also note that, as consistent with [4], the solution ψλ
R(t;u) to PRψ = 0 equals the

one-point-function

〈p − 1|ψ(t)|WR〉 =
∑

n

t−p−n〈p;Rn|WR〉 = t−pe
λ
Λ

t−1
= ψλ

R(t;u), (5.33)

where Rn represents a Young tableau consisting of just one row of n boxes.
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5.2.2 U(2) theory

We apply now the above strategy for the U(2) geometry. We split the corresponding curve

into a left and a right half geometry, and for brevity focus just on the right part defined by

ΣR : Λ2t−1 = (v − u2)(v − u1). (5.34)

The B-field quantizes this equation into the second order differential equation

PRψ(t) =
{
λ2(t∂t − p2)(t∂t − p1)− Λ2t−1

}
ψ(s) = 0. (5.35)

A change of variables z = 2t−1/2 followed by the ansatz ψ(z) = z−(p1+p2)φ(z) and the

rescaling z 7→ (λ/Λ)z transforms this differential equation into the familiar Bessel equation

(
z2∂2

z + z∂z − ν2 − z2
)
φ(z) = 0, with ν2 = (p1 − p2)

2, (5.36)

whose linearly independent solutions are given by modified Bessel functions Iν(z) and

Kν(z) of the first kind. The total solution in the original t-coordinate is therefore a linear

combination of

ψλ
R(t; p1, p2) =




t

p
2 Iν

(
2Λ
λ
√

t

)
,

t
p
2Kν

(
2Λ
λ
√

t

)
,

(5.37)

where p = p1 + p2. These modified Bessel functions have different asymptotics at infinity

and relate to each other by going around the punctured disc C
∗
t .

The second order differential operator PR defines the Dλ-module

MR =
Dλ

Dλ · PR
, (5.38)

which we claim represents fermions on the quantum SU(2) Seiberg-Witten geometry. To

check this statement, we have to find the fermionic state corresponding to MR. So we

asymptotically expand of the modified Bessel functions around t = 0 in λ:

Iν

(
2Λ

λ
√
t

)
∼ t1/4 exp

(
2Λ

λ
√
t

){
1− (µ− 1)

8

λ
√
t

2Λ
+

(µ− 1)(µ− 9)

2! · 82

λ2t

4Λ2
+ . . .

}

Kν

(
2Λ

λ
√
t

)
∼ t1/4 exp

(
− 2Λ

λ
√
t

){
1 +

(µ− 1)

8

λ
√
t

2Λ
+

(µ− 1)(µ− 9)

2! · 82

λ2t

4Λ2
+ . . .

}
,

with µ = 4ν2.

Recall that equation (5.22) implies that any exponential function in the local coordinate

v−1 =
√
t near the puncture acts trivially on the vacuum state. Equivalently, this is true

for any asymptotic series in
√
t that assumes the value 1 at

√
t = 0. In other words, we

can forget about the complete expansion in
√
t! Only the WKB pieces

t1/4 exp

(
± 2Λ

λ
√
t

)
(5.39)

– 37 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
7

are relevant in writing down the fermionic state. This is exactly opposite to the matrix

model examples, where the WKB-piece can be neglected and the perturbative series in λ

defines the fermionic state.

The derivatives of the above solutions have one term proportional to ψ(s) (which we

may forget about), and a term proportional to the derivative of the Bessel functions. The

latter may be expanded as

∂sIν(t) ∼ t−1/4 exp

(
2Λ

λ
√
t

){
1− (µ+ 3)

8

λ
√
t

2Λ
+

(µ− 1)(µ+ 15)

2! · 82

λ2t

4Λ2
+ . . .

}

∂sKν(t) ∼ t−1/4 exp

(
2Λ

λ
√
t

){
1 +

(µ+ 3)

8

λ
√
t

2Λ
+

(µ− 1)(µ+ 15)

2! · 82

λ2t

4Λ2
+ . . .

}

around
√
t = 0. Again with the same reasoning only the WKB piece is necessary to write

down the quantum state. Taking into account the extra factor t
p
2 in (5.37) the subspace

W+
R is thus generated by the O(t)-module

t
p
2


 t

1
4 exp

(
2Λ
λ
√

t

)

t−
1
4 exp

(
2Λ
λ
√

t

)

O(t), (5.40)

and blends (via the lexicographical ordening) into the fermionic state

|W+
R 〉 = v−p e

Λ
λ̃

v
(
v

1
2 ∧ v− 1

2 ∧ v− 3
2 ∧ v− 5

2 ∧ . . .
)

(5.41)

on the cover. Here we used a cover coordinate v−1 obeying v−2 = t, and rescaled the

topological string coupling as λ̃ = λ/2. W+
R is thus simply generated by a single function

ψλ(v) = v−pe
Λ
λ̃

v (5.42)

Hence the fermions blend into the Bogoliubov state

|W+
R 〉 = e

Λ
λ̃

α−1 |p〉, (5.43)

when p is an integer.

Note that the only modulus that appears in this expression is p. This represents the

diagonal U(1), denoting the total fermion flux through the geometry. The moduli p1 and

p2 measure the fermion flux through an internal cycle and are not visible in the result,

because the final state sums over all internal momenta. In general any SU(2) Seiberg-

Witten geometry with the same quantized p yields the same fermionic state.

The fermionic (or dual) partition function is found by contracting the left and the right

states, similarly as in the U(1) example above. The left state is just the complex conjugate

of the right one, so we find

ZD
NO(p;λ,Λ) = 〈p|e

Λ
λ̃

α1e
Λ
λ̃

α−1 |p〉 ∼ 〈p|e
1
λ̃

α1Λ2L0e
1
λ̃

α−1 |p〉. (5.44)

The result is very similar to the U(1) example, up to the shift λ 7→ λ/2. But notice that this

fermionic state is written in terms of a single blended fermion. Decomposing this fermion
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into two twisted fermions makes it natural to insert an extra operator in the middle of the

correlator, that measures the momenta of the two fermions through the A-cycles of the SW

geometry. Weighting these momenta with a potential ξi, for i = 1, 2, yields

ZD
NO(ξi, p;λ,Λ) ∼ 〈p|e

1
λ̃

α1eHξi Λ2L0e
1
λ̃

α−1 |p〉, (5.45)

where Hξi
= 1

λ

∑
r ξ(r+1/2) mod 2ψrψ

†
−r = 1

λ(p1ξ1 + p2ξ2). This is the answer conjectured by

Nekrasov and Okounkov in [55].

5.2.3 U(N) theory

It is not difficult to extend this discussion to the U(N) theory (5.14), whose corresponding

right half geometry we write as

ΣN : ΛN t−1 =
N∏

i=1

(v − ui). (5.46)

Canonically quantizing this geometry and changing the coordinates z =
(

Λ
λ

)N
t−1, brings

us to the degree N differential equation

PNψ(z) =

(
N∏

i=1

(z∂z − pi)− z
)
ψ(z) = 0. (5.47)

It turns out that a solution to the above equation is given by a particular Meijer G-

function, denoted Gm,n
p,q (z). The Meijer G-function is a complicated special function which

was introduced in order to unify a number of standard special function [58–60], and is

defined in terms of a complex integral

Gm,n
p,q

(
a1, . . . , ap

b1, . . . , bq
| z
)

=
1

2πi

∫

L

∏m
j=1 Γ(bj − t)

∏n
j=1 Γ(1− aj + t) zt

∏q
j=m+1 Γ(1− bj + t)

∏p
j=n+1 Γ(aj − t)

dt, (5.48)

where L is a contour which goes from −i∞ to +i∞ and separates the poles of Γ(bj − t),
for j = 1, . . . ,m, from those of Γ(1− ai + t), for i = 1, . . . , n.

It can be shown that the Meijer G-function solves the differential equation



q∏

i=1

(z∂z − bi) + (−1)p−m−n+1z

p∏

j=1

(z∂z − aj + 1)


 G(z) = 0. (5.49)

So, indeed the Seiberg-Witten differential equation (5.47) is a special case of Meijer differ-

ential equation (5.49) with p = n = 0 and q = N . Therefore the differential equation (5.47)

is solved by

ψ(z) = G0,0
0,N

(
∅

p1, p2, . . . , pN
| z
)
. (5.50)

Similarly as before we claim that the D-module corresponding to U(N) Seiberg-Witten

curve is generated by PN . A subspaceW corresponding to this D-module is thus generated

by a solution ψ(t) and its derivatives in t∂t.
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For p < q the Meyer differential equation (5.49) has a regular singularity at z = 0 and

an irregular one for z = ∞. To extract the I-brane fermionic state, we are interested in

the behaviour around the irregular singularity, where t → 0. It turns out that one of the

independent solutions of the Seiberg-Witten differential equation (5.47) has the asymptotic

expansion [58–60]

ψ(v) ∼ e
Λ

λ/N
v
v

1−N
2 vp

∞∑

j=0

kjv
−j , (5.51)

around this singularity, which is conveniently written in the cover coordinate (−v)N =

t−1 =
(

λ
Λ

)N
z. The other solutions are found by multiplying the coordinate v by N -th

roots of unity, and thus behave distinctly at infinity. As before, p =
∑N

i=1 pi.

To find the fermionic state corresponding to the U(N) Seiberg-Witten curve, we act

with ψ(v) on the Dirac vacuum. The positive power of v in the exponent of ψ(v) corresponds

in the operator language to α−1, whereas vp lifts the Fermi level. The remaining series

just contains negative powers of v which translate to a trivial action on the vacuum in the

operator formalism. Therefore, the above asymptotic solution and its derivatives (in t∂t)

blend into the state

|WR〉 = e
Λ
λ̃

α−1 |p〉, (5.52)

with rescaled topological string coupling λ̃ = λ/N . Like for the U(2) Seiberg-Witten

geometry the dependence on the individual moduli pi has dropped out.

Similarly as in U(1) and U(2), in the present case we also find the U(N) Nekrasov-

Okounkov dual partition function

ZD
NO(ξi;λ,Λ) = 〈p|e

1
λ̃

α1eHξi Λ2L0e
1
λ̃

α−1 |p〉. (5.53)

This fermionic correlator is indeed the one postulated in [55]. For N = 1 or N = 2

the Meijer G-function specializes respectively to the exponent and Bessel functions, which

reproduces the results derived in previous subsections.

Although the normalizable moduli pi disappear in the final I-brane partition function,

they reappear when the state is unblended in terms of N single fermions

e
1
λ̃

α−1 |p〉 =
∑

R

µR

λ̃|R| |p,R〉 =
∑

P
pi=p

∑

R(i)

√
Zpert(p)

µ~R(p, λ̃)

λ̃|R|

N⊗

l=1

|pi, R(i)〉, (5.54)

as may be seen from (5.10) and (5.13). The charges pi have an interpretation as the fermion

fluxes through the N tubes of the Seiberg-Witten geometry we started with.

Actually, we find the same fermionic state when starting with any other Seiberg-Witten

geometry whose fermion flux at infinity is p. Hence one microstate in the total sum (5.54)

can be interpreted as a fermion flux through an infinite set of geometries. This gives

the state (5.54) as well as the partition function (5.8) the interpretation of a sum over

geometries.
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Figure 6. On the left we see the five-dimensional U(2) Seiberg-Witten surface with fermion fluxes

through its A-cycles, and on the right a corresponding toric diagram. The fermion flux deforms the

Kähler lengths of the toric diagram as in equation (5.55).

5.3 Relation to topological string theory

Nekrasov and Okounkov also derive a partition function for the 5-dimensional U(N)

Seiberg-Witten theory compactified on the circle of circumference β [54, 55, 57] . It is

given by a K-theoretic generalization of the 4-dimensional formula in equation (5.4).

This 5-dimensional theory is closely related to the topological string theory by geo-

metric engineering [61] on a toric Calabi-Yau background [62, 63]. Namely, the partition

function of the topological string theory on an AN -singularity fibered over P
1 (whose toric

diagram consists of N − 1 meshes as in figure 6) is equal to the partition function of the

5-dimensional gauge theory given above, when the Kähler sizes of the internal legs are

QFi = eβ(ai+1−ai), QB =

(
βΛ

2

)2N

, (5.55)

where Fi labels the vertical legs and B the horizontal ones. In the so-called gauge theory

limit, when β → 0, the topological string partition function reduces to the 4-dimensional

Seiberg-Witten partition function. The corresponding B-model mirror geometry is of

the form

XSW : xy −H(t, v) = 0, (5.56)

where H(t, v) = 0 represents a Riemann surface of genus N − 1. In the gauge theory limit

this surface becomes the Seiberg-Witten curve ΣSW , parametrized as in the equation (5.3).

In topological string theory it is natural as well to write down a dual partition func-

tion [4]. In a local B-model this allows the possibility of arbitrary fermion fluxes through

the handles of the Riemann surface. In this setting it has been argued before that turning

on a fermion flux is equivalent to deforming the geometry. More precisely, fermion flux

parametrized by P = piBi changes the integral of the holomorphic 3-form over any linking

3-cycle Ai, and thereby shifts the complex structure moduli Si =
∫
Ai

Ω as

Si 7→ Si + λpi (5.57)
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Figure 7. Three-cycles in the Seiberg-Witten U(2)-geometry.

In the A-model fermion flux translates into wrapping D4 branes around 4-cycles, and

thereby deforms the Kähler moduli. The I-brane partition function thus equals the dual

topological string partition function.

Because the Seiberg-Witten surface is embedded in C×C
∗, A and B-cycles in the toric

threefold will have topologies S1×S2 and S3, respectively (they are drawn in figure 7). In

particular, a basis of Ai-cycles can be chosen to reduce to the surface as the combination

Ai −Ai+1. Now notice that the 3-cycle Ai with topology S1 × S2 is mirror to the vertical

2-cycle Fi that connects the i-th and the i+ 1-th horizontal leg. So turning on a fermion

flux pi through the i-th leg of the Seiberg-Witten geometry changes the complex structure

parameter Si by an amount proportional to ai − ai+1. This explains the Kähler size QFi

in (5.55) in terms of fermionic fluxes through the Seiberg-Witten curve, and in reverse

why (5.54) may be interpreted as a sum over Seiberg-Witten geometries, or equivalently

toric diagrams. So we conclude that the fermionic interpretation in 4d of Nekrasov and

Okounkov is dual in 6d to the fermionic interpretation of the topological string, and has a

deeper interpretation in terms of D-modules.

5.3.1 Five-dimensional U(1) theory

Quantizing a five-dimensional Seiberg-Witten geometry yields a difference (instead of dif-

ferential) equation. Working out D-modules for these geometries we leave for future work.

Let us treat one example in detail though. The five-dimensional right U(1) Seiberg-Witten

half-geometry

Σ5d
R : βΛe−βλt−1 + e−βv − 1 = 0 (5.58)

may be drawn as a pair of pants. In the field theory limit β → 0 it reduces to the familiar

equation Λt−1 = v for the right-half Seiberg-Witten geometry (with u = 0).

In the B-model the most general state assigned to a local pair of pants geometry is

given by a Bogoliubov state [4]

|W〉 = exp


∑

i,j

∞∑

m,n=0

aij
mnψ

i
−m−1/2ψ

∗j
−n−1/2


 |0〉, (5.59)
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Figure 8. The B-model vertex (on the left) may be expanded as a sum over fermionic states

|p1, R1〉 ⊗ |p2, R2〉 ⊗ |p3, R3〉, with p1 + p2 + p3 = 0, corresponding to a conserved fermion flux

through the pair of pants. The five-dimensional right-half Seiberg-Witten geometry (on the right)

with charge p only has one partition R 6= 0.

where the index i = 1, 2, 3 describes the fermion field on the three asymptotic regions of

the pair of pants, and the coefficients are determined by a comparison with the A-model

topological vertex. This exponent can be expanded as a sum over states (see figure 8)

|p1, R1〉 ⊗ |p2, R2〉 ⊗ |p3, R3〉, (5.60)

where the fermion flux is conserved: p1 + p2 + p3 = 0. To describe the 5d Seiberg-Witten

U(1) geometry we won’t need this state in full generality.

The B-field quantizes this geometry into the difference equation

P (t)Ψ(t) =
(
βΛe−βλt−1 + eβλt∂t − 1

)
Ψ(t) = 0. (5.61)

Its fundamental solution is the quantum dilogarithm

Ψ(t) = exp
∑

n>0

(βΛ)nt−n

n(1− eβλn)
. (5.62)

As an intermezzo, notice that quantizing the equation

βv = − log
(
1− βΛe−βλt−1

)
, (5.63)

which is just a rewriting of equation (5.58) for Σ5d
R , we find a differential equation which may

be interpreted as the WKB approximation of difference equation (5.61). A fundamental

solution of the differential equation is given by the genus 0 disc amplitude

Ψ0(u) = exp
∑

n>0

(βΛ)nt−n

λn2eβλn
. (5.64)

Acting with the five-dimensional dilogarithm on the Dirac vacuum state yields the

fermionic state

|W〉5d
U(1) = exp

∑

n>0

(βΛ)nα−n

n(1− eβλn)
|0〉. (5.65)
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This describes a subset of |W〉 where only the quantum number R1 is non-trivial. Summing

over all external states of the form

| − p,R〉 ⊗ |p, •〉 ⊗ |0, •〉, (5.66)

incorporates a fermion flux p through the pair of pants. In the field theory limit β → 0 the

resulting state reduces to the familiar four-dimensional state

exp(α−1/λ)|p〉 ⊗ |p, •〉 ⊗ |0, •〉.

The partition function is found as the contraction of the left and right 5d half-

geometries. (Or equivalently in the topological B-model by inserting a propagator [4].)

This yields the fermionic correlator

〈0|Γ̃+Γ̃−|0〉 = 〈0|Γ+(βΛ)2L0Γ−|0〉, (5.67)

with

Γ̃± = exp
∑

±n>0

(βΛ)|n|αn

|n|(1− eβλn)
and Γ± = exp

∑

±n>0

αn

|n|(1− eβλn)
. (5.68)

Indeed, the result equals the five-dimensional U(1) partition function

Z
U(1)
5d (λ,Λ, β) = exp

∞∑

n=1

(βΛ)2n

4n sinh2(βλn/2)
, (5.69)

that was found by Nekrasov and Okounkov in [55].

6 Discussion

In this paper we argued that the fundamental objects underlying various systems in theoret-

ical physics are chiral fermions living on quantum curves. In our formulation the quantum

curve is defined, similarly to an affine classical curve, in terms of an equation of the form

P (z,w) = 0. Its crucial feature, however, is the non-commutative character of the coor-

dinates z,w. These quantum (or non-commutative) curves generalize the classical curves

that come up in the standard formulation of a given topic. Examples of such classical

curves can be found in the theory of random matrices, c = 1 string theory, Seiberg-Witten

theory, and more generally in topological string theory. Semi-classically their (genus one)

free energy is computed as a fermionic determinant on the classical curve. In our approach

chiral fermions on the quantum curve generate the all-genus expansion of the free energy

with respect to the non-commutativity parameter λ.

Fermions on a non-commutative curve can be realized physically within string theory

as massless states of open strings on an intersecting brane configuration in the presence of

a B-field. This idea was already put forward in [5]. In this paper we have exploited this

I-brane system in a few important examples.

First of all we showed, reinterpreting the results in [38], that I-branes and D-modules

provide an insightful formulation of matrix models. This quite general statement is also
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appealing when certain matrix model limits are considered, such as a double scaling limits.

In this case one recovers an I-brane formulation of minimal string theory and topological

gravity. Secondly, we discussed how to reformulate c = 1 string theory in the framework

of D-modules.

Finally, we discussed supersymmetric gauge theories. Using D-module formalism we

derived fermionic expressions for the partition function of the N = 2 gauge theory, re-

producing the dual all-genus partition function introduced in [55]. We considered mainly

4-dimensional Seiberg-Witten geometries with unitary gauge groups, and explained only

the simplest U(1) example in the 5-dimensional theory. It would be insightful to ex-

tend these results to other gauge groups and include matter content. It is clear that this

should be possible, as these aspects of the 5-dimensional Seiberg-Witten theory are cap-

tured by topological string theory on toric manifolds. The latter system can be solved

in fermionic B-model formulation of the topological vertex [4] which is equivalent to the

I-brane fermions [5]. Nonetheless, finding the quantum I-brane curve representing such

configurations appears to be a nontrivial task.

In all these examples we were able write down a D-module that, through the pre-

scription in section 2, yields the all-genus partition function. Especially the matrix model

examples made it clear that this D-module can be quite non-trivial in general. Only for

the simplest curves, such as those appearing in double scaled matrix models, the D-module

can be found by canonically quantizing the classical spectral curve.

In the process of unraveling the D-module structure in both sets of examples, we no-

ticed some crucial differences. While the WKB piece of the D-module generator can be

ignored in finding the all-genus matrix model partition function, we discovered that it plays

an eminent role for the Seiberg-Witten geometries. Another distinction is the difference in

(non-)normalizable modes. While the potential W parametrizes non-normalizable modes

that appear in the D-module as parameters, in contrast, the normalizable modes in the

Seiberg-Witten geometries are eaten by the D-module, and only visible as a sum over inter-

nal fermion fluxes in the geometry. On the other hand, varying the D-module with respect

to the non-normalizable modes yields differential equations which relate to isomonodromy

and the Stokes phenomenon.

Even with this rather broad set of examples, a few major questions remain. First of

all, we cannot give a recipe in general how to find the quantum curve underlying a certain

problem. Secondly, it is not obvious that our prescription is independent of the chosen

parametrization of the classical curve. As we noted in the example of the classical curve

zw = 1, different parametrizations can lead to different quantum curves that nonetheless

yield the same partition function. This should hold in general cases as well, as topological

string theory associates a unique all-genus partition function to a given curve. Thirdly,

we haven’t exploited some of the advantages of using D-modules instead of differential

equations. One of the main advantages is some independence on the way the differential

equation is written down. It would be very interesting to try to match this freedom with the

choice of parametrization for the classical curve. Finally, we have only discussed examples

with one or two local patches. It would be highly insightful to study more general examples.

While in this paper our focus has been to associate a λ-perturbative quantum state to
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a spectral curve, we noticed that D-modules in fact contain non-perturbative information.

These bits get lost when we turn theD-module in a fermionic state by making an asymptotic

expansion of the D-module generators in λ. This is in line with the discussion in [27],

where it is argued that non-perturbative effects drastically modify the non-trivial target

space curve into a complex plane. Non-perturbative effects in matrix models, as well as in

the topological string theory, were also recently discussed in [64, 65]. Especially interesting

in this respect is [66], where a non-perturbative partition function is proposed that is very

similar to the I-brane partition function (2.12).

In the step where we turn a D-module in a quantum state, a choice of boundary

conditions has to be made. This implies that final states are troubled by the Stokes effect:

solutions that decay faster can be added at no cost and the state changes when one crosses

certain lines in the moduli space. This suggests that the D-modules we studied in this

paper may help in the understanding of wall-crossing phenomena in the corresponding

N = 2 theories [67, 68].

More mathematically, our formalism is deeply connected with quantum integrable

systems and the geometric Langlands program [8, 21, 22, 69–72], while approaching these

topics from a string theoretic perspective. Especially interesting in this respect is our

quantitative approach, that allows us to associate quantum invariants to spectral curves.

In the future we hope to make this link even more concrete.

Specifically, it would be enlightening to have a better description of the non-

commutative fermionic CFT on a given quantum curve. It is interesting to find out whether

this relates to the WZW models based on opers in the geometric Langlands program: as so-

called Hecke eigensheafs these generate examples of the Langlands correspondence. And,

to discover the relation with the interacting bosonic CFT’s that give another perspective

on these intersecting brane configurations [73–75] as well as [76]. In particular, both models

determine a set of recursion relations. It would be helpful to compare them.

A clear physical realization of quantum curves and the associated well-defined math-

ematical formulation in terms of D-modules are great advantages of our approach. In

consequence it can be applied to numerous situations mentioned above and yields definite

quantitative results. Nonetheless, the idea of quantum curves is not new and earlier at-

tempts of their formulation appeared before in physics and mathematics. It is worthwhile

to recall how those attempts relate to our formalism.

The notion of quantum or non-commutative geometry has also been introduced by

A. Connes [77]. His approach relies on replacing the algebra of functions on a manifold

by a non-commutative C∗-algebra. In this context a program of developing a theory of

non-commutative Riemann surfaces, from the point of view of geometric quantization [78],

was advanced in [79]. Independently of this program, also some particular examples of

low genus non-commutative Riemann surfaces have been analyzed in literature. In genus

zero they include the so-called Podleś sphere [80] and more generally fuzzy spheres [81],

which also found vast application in string theory. In genus one, one can consider a non-

commutative torus which arises naturally in a certain realization of M-theory known as

Matrix theory [82, 83]. Non-trivial B-field is an essential ingredient in a realization of these

systems. It would be interesting to see if they could be related to I-brane configurations.
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A Infinite dimensional Grassmannian

In this section we introduce an infinite dimensional Grassmannian and its description in

terms of the second quantized fermion field (we learned this material e.g. from [3, 13–16]).

A.1 Grassmannian and second quantized fermions

The space H = C((z−1)) of all formal Laurent series in z−1 can be given an interpretation

of a Hilbert space. Basis vectors zn, for n ∈ Z, correspond to one particle states of energy

n associated to the Hamiltonian z∂z. This Hilbert space has a decomposition

H = H+ ⊕H−, (A.1)

such that the first factor H+ = C[z] is a subspace generated by z0, z1, z2, . . ., while H−
is generated by negative powers z−1, z−2, . . .. Consider now a subspace W of H with a

basis {wk(z)}k∈N. We say it is comparable to H+, if in the projection onto positive and

negative modes

wk =
∑

j≥0

(w+)ijz
j +

∑

j>0

(w−)ijz
−j (A.2)

the matrix w+ is invertible. The Grassmannian Gr0 is the set of all subspaces W ⊂ C((z))

which are comparable to H+.

In what follows we take much advantage of the correspondence between Gr0 and the

charge zero sector of the second quantized fermion Fock space F0. In this correspondence

the subspace H+ is quantized as the Dirac vacuum

|0〉 = z0 ∧ z1 ∧ z2 ∧ . . . , (A.3)

with all positive energy states filled. The fermionic state associated to the subspace W
with basis w0(z), w1(z), w2(z), . . . is represented by the semi-infinite wedge5

|W〉 = w0 ∧ w1 ∧ w2 ∧ . . . (A.4)

5Actually, we have to tensor with z
1

2 to make the state fermionic.
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which is an element of the fiber of a determinant line bundle over the element W ∈ Gr
(and therefore determined up a complex scalar c).

To make contact with the usual formulation of the second quantized fermion Fock

space, we can identify the differentiation and wedging operators with the fermionic modes

ψn+ 1
2

=
∂

∂z−n
ψ∗

n+ 1
2

= zn ∧ . (A.5)

These half-integer modes are annihilation and creation operators which arise from a de-

composition of the fermion field ψ(z) and its conjugate ψ∗(z)

ψ(z) =
∑

r∈Z+ 1
2

ψrz
−r− 1

2 ψ∗(z) =
∑

r∈Z+ 1
2

ψ∗
rz

−r− 1
2 , (A.6)

and they obey the anti-commutation relations {ψr, ψ
∗
−s} = δr,s.

For subspaces W ∈ Gr0 the determinant of the projection onto H+ is well defined and

can be expressed as

detw+ = 〈0|W〉. (A.7)

More generally, one can consider the Fock space F which splits into subspaces of

charge p

F =
⊕

p∈Z

Fp. (A.8)

Each subspace Fp is built by acting with creation and annihilation operators on a vacuum

|p〉 = zp ∧ zp+1 ∧ zp+2 ∧ . . . , (A.9)

with the property

ψr|p〉 = 0 for r > p,

ψ∗
r |p〉 = 0 for r > −p. (A.10)

The Fermi level of the vacuum |p〉 is shifted by p units with respect to the Dirac vacuum

|0〉. This fermion charge is measured by the U(1) current

J(z) =: ψ(z)ψ∗(z) :=
∑

n

αnz
−n−1, (A.11)

whose components αn =
∑

k : ψrψ
∗
n−r satisfy the bosonic commutation relations

[αm, α−n] = mδm,n. (A.12)

With each subspace W ⊂ C((z)) comparable to the one generated by (zk)k≥p one can

associate a state |W〉 ∈ F of charge p. This charge is equal to the index of the projection

operator pr+ :W → H+.

A state in the Fock space F has also a simple representation in terms of the so-called

Maya diagram (see figure 9). Black boxes in such a diagram represent excitations, whereas

– 48 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
7

Figure 9. Elements of the Fock space F are in a bijective correspondence with Maya diagrams.

The bottom line represent a Maya diagram corresponding to a fermionic state with charge p. As

illustrated it is characterized by a two-dimensional partitions R located at position p. We therefore

denote the state as |p,R〉 ∈ F .

white boxes are gaps in the energy spectrum of the fermion. The charge of a state is given

by the number of excitations minus the number of gaps. Fermionic states or Maya diagrams

of a fixed charge p can also be associated to two-dimensional partitions. In particular in

p = 0 sector the state

|R〉 =

d∏

i=1

ψ∗
−ai− 1

2
ψ−bi− 1

2
|0〉 (A.13)

corresponds to the partition R = (R1, . . . , Rl) such that

ai = Ri − i, bi = Rt
i − i. (A.14)

In what follows a state corresponding to a partition R of charge p is denoted as |p,R〉.

A.2 Flow on the Grassmannian

There is an action on the Grassmannian defined by multiplying a basis vector wk(z) of W
by a power series f(z) =

∑
fnz

n that vanishes at z = 0.

f(z)|W〉 =
∑

k

w0 ∧ . . . ωk−1 ∧ f · wk ∧ wk+1 . . . . (A.15)

When we write wk(z) in terms of the basis (zl)l∈Z this action is encoded by the multipli-

cation by an infinite matrix in gl∞, whose (i, j)th entry is given by fi−j. On the fermionic

state |W〉 a multiplication by zn translates into a commutator with the bosonic mode αn,

since αn increases the fermionic mode number by

[αn, ψr] = ψr+n. (A.16)

Multiplication by a power series f(z) therefore translates to the operator

f =
∑

n

fn[αn, •] ∈ gl∞ (A.17)

on the Fock space.
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Exponentiating the action of gl∞ yields the group Gl∞. An element g(z) = exp(f(z))

of this group acts on |W〉 by multiplying all its basis vectors

g(z)|W〉 = g · w0 ∧ . . . ∧ g · wk ∧ . . . . (A.18)

From the fermionic point of view this action is given by conjugating each basis vector wk

with the element

g = exp
(∑

fnαn

)
= exp

(∮
dz f(z)J(z)

)
∈ Gl∞. (A.19)

We call Γ the group of exponentials g(z) : S1 → C
∗. An important subgroup of Γ is

the group Γ+ of functions g0 : S1 → C
∗ that extend over the disk D0 = {z : |z| ≤ 1}:

Γ+ = {g0 : D0 → C
∗ : g0(0) = 1}. (A.20)

Another subgroup is the group Γ− of functions g∞ : S1 → C
∗ that extend over the disk

D∞ = {z ∈ C ∪ {∞} : |z| ≤ 1}:

Γ− = {g∞ : D∞ → C
∗ : g∞(∞) = 1}. (A.21)

Any g ∈ Γ can be written as an exponential exp(f). When g ∈ Γ+ the function f vanishes

at z = 0, and when g ∈ Γ− it vanishes at z =∞.

Γ+ and Γ− have different properties when acting on Grassmannian. The action of Γ−
is free, since any W ∈ Gr has only a finite number of excitations. On the contrary, Γ+ acts

trivially on a vacuum state |p〉. Although the action of the groups Γ+ and Γ− on a subspace

W is commutative, as it is just given by multiplication, as operators on the fermionic state

|W〉 it matters which element is applied first. This introduces normal ordering ambiguities.

An element

g(t, z) = exp


∑

k≥1

tkz
k


 = exp (f(t, z)) ∈ Γ+, (A.22)

defines a linear flow over the Grassmannian Gr. On the Fock space it acts as an evolution

operator

U(t) = exp

(∮
dz

2πi
f(t, z)J(z)

)
. (A.23)

The determinant det(W)+ is not equivariant with respect to the action of Γ+. The differ-

ence is measured by the so-called tau-function

τW(g) =
det (g−1w)+
g−1 det w+

=
〈0|U(t)|W〉
g−1〈0|W〉 , (A.24)

which yields a holomorphic function τ : Γ+ → C. This can be regarded as a wave function

of |W〉.
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A.3 Blending

So far we considered the Hilbert space H ≡ H(1) of functions with values in C. More gen-

erally, one can consider a Hilbert space H(n) of functions with values in C
n. Let (ǫi)i=1,...,n

denote a basis of C
n. For each n there is an isomorphism between H(n) and H given by

the lexicographical identification of the basis

ǫiz
k 7→ znk+i−1. (A.25)

This isomorphism is called blending.

In the fermionic language the Hilbert space H(n) lifts to the Fock space of n fermions

ψ(i), i = 1, . . . , n, each one with the expansion (A.6) and such that

{ψ(i)
r , ψ∗ (j)

s } = δi,jδr,−s. (A.26)

Now blending translates to the following redefinitions of these n fermions into a single

fermion ψ

ψn(r+ρi) = ψ(i)
r , ψ∗

n(r−ρi)
= ψ∗ (i)

r , (A.27)

where

ρi =
2i− n− 1

2n
. (A.28)

Blending can also be expressed in terms of two-dimensional partitions introduced

above. Consider n partitions R(i) of charges pi, with
∑

i pi = p, corresponding to states

in n independent Hilbert spaces of fermions ψ(i). Associating with each such partition a

state of a chiral fermion |pi, R(i)〉, we have a decomposition

|p,R〉 =
n⊗

i=1

|pi, R(i)〉, (A.29)

and the blended partition R of charge p, corresponding to a state in the Hilbert space of

the blended fermion Ψ, is defined as

{n(pi +R(i),m −m) + i− 1 | m ∈ N} = {p + RK −K | K ∈ N}. (A.30)

B Some background on D-modules

The theory of D-modules was introduced and developed, among others, by I. Bernstein,

M. Kashiwara, T. Kawai and M. Sato, to study linear partial differential equations from

an algebraic perspective [9–12]. Currently this is a very active field, with connections and

applications to many other branches of mathematics.

D-modules are defined as modules for the algebra of differential operators D. In gen-

eral, in a local C
n patch with complex coordinates (z1, . . . , zn), the operators zi and ∂zi

represent the nth Weyl algebra. The operators P ∈ D are of the form

P =
∑

i1,...,in

ai1,...,in∂zi1
· · · ∂zin

. (B.1)
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With a set of operators P1, . . . , Pm ∈ D one can associate a system of differential equations

P1Ψ = . . . = PmΨ = 0, (B.2)

where Ψ takes values in some function space V. An algebraic description of solutions to

such a system can be given in terms of a D-module M determined by an ideal generated

by P1, . . . , Pm ∈ D
M =

D
D · 〈P1, . . . , Pm〉

. (B.3)

The advantage of considering such a D-module is, firstly, that it captures the solutions to

the above system of differential equations independently of the form in which this system is

written. Secondly, it is also independent of the function space V — be it the space of square-

integrable functions, the space of distributions, the space of holomorphic functions, etc.

Nonetheless, having chosen a particular space V one is interested in, the space of

solutions is simply given by the algebra homomorphism

HomD(M,V). (B.4)

E.g. holomorphic solutions to the differential equation PΨ(z) = 0 can be captured as a

homomorphism of D-modules

M =
D
D · P → OC, (B.5)

with OC the algebra of holomorphic functions on the complex plane C. Indeed, define a

map that sends the element

[1] ∈M 7→ Ψ(z) ∈ OC. (B.6)

This is well-defined because every element P ′ ∈ DP is mapped to zero (remember that Ψ

fulfills PΨ = 0), and it is a bijection; conversely, any map M to OC is determined by a

holomorphic solution to the differential equation PΨ = 0.

An important notion is a dimension of a D-module. The so-called Bernstein inequality

asserts that a non-zero D-module M over the nth Weyl algebra has a dimension 2n ≥
dimM≥ n. In particular, D considered itself as a D-module has a dimension 2n. On the

other hand, dim C[x1, . . . , xn] = n. For a non-zero P ∈ D, dimD/DP = 2n− 1.

A special role in the theory of D-modules is played by the so-called holonomic D-

modules, which by definition have a minimal dimension n. In particular they are cyclic,

which means of the form {DΨ : D ∈ D}, i.e. they are determined by a single element

Ψ ∈M called a generator.

In the context of the I-brane in C
2 we are just interested in the 1st Weyl algebra (2.15) of

dimension 2. In this case we immediately conclude that the module D/DP has a dimension

n = 1 for any non-zero P , and is thus holonomic and cyclic. It can be realized as

M = {DΨ : D ∈ D}, (B.7)

where the generator Ψ is a solution to the differential equation PΨ = 0.
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B.1 Flat connections

More generally, D-modules are defined as differential sheaves on any variety X. The

sections of the sheaf DX over an open neighbourhood U are given by linear differential

operators on U . Therefore, both the structure sheaf OX (of holomorphic functions) as well

as the tangent sheaf TX (whose local sections are vector fields) may be embedded in DX

OX →֒ DX ←֓ TX . (B.8)

In fact, DX is generated by these inclusions.

A sheafM on X is defined to be a left module for DX when v ·s ∈M, for any v ∈ DX

and s ∈M. Furthermore, it has to fulfill

v · (fs) = v(f)s+ f(v · s) (B.9)

[v,w] · s = v · (w · s)−w · (v · s)

for any v ∈ DX , f ∈ OX and s ∈M. Suppose thatM is a left DX-module whose sections

are the local sections of some vector bundle V (this encomprises all DX -modules that are

finitely generated as OX -modules). Then the action of DX defines a connection on V as

∇v(s) = v · s, (B.10)

whose curvature is zero. So a D-module structure on the sheaf of sections of a vector

bundle V defines a flat connection on this vector bundle. And conversely, any module

consisting of sections of a vector bundle V with flat connection ∇A, has an interpretation

as a D-module defined through the action of the flat connection. Therefore, a D-module is

in general just a system of linear differential equations, changing from patch to patch on

X. This is known as a local system. In the main part of this paper X is just C or C
∗.

C Relation to quantum integrable systems

In this article we focus on smooth curves that are given by an equation of the form

Σ : H(z,w) = wn + un−1(z)w
n−1 + . . .+ u0(z) = 0, (C.1)

where z ∈ C (or C
∗) and w ∈ C. These play a prominent role in integrable systems as

spectral curves. It is a degree n cover over C (or C
∗)

Σ ⊂ T ∗
C

↓π (C.2)

C

with possible branch points (from now on we restrict to z ∈ C for simplicity in notation).

The spectral curve is embedded in C
2 and equipped with the (meromorphic) 1-form

η =
1

λ
wdz|Σ. (C.3)
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Our notion of a quantum curve agrees with a notion of quantum spectral curves in this

context. Let us say a few words about this.

Fermions on Σ transform as holomorphic sections of a line bundle L⊗K1/2
Σ , provided

by the D6-brane. The pair (L, η) on Σ pushes forward to a couple

π∗ : (L, η) 7→ (V = π∗L, φ = π∗η) (C.4)

on C under the projection map π : Σ→ C. So V is a rank n vector bundle on C, whereas φ

is a holomorphic 1-form valued in gl(n).6 Such an object is called a Higgs field. It endows

V with the structure of a Higgs bundle. Setting the characteristic polynomial

det(η − φ(z)) = 0 (C.5)

returns the equation for the spectral curve. The push-forward map π∗ sets up a bijection

between spectral data and (stable) Higgs pairs

(Σ, L) ↔ (V, φ). (C.6)

The moduli space of stable Higgs pairs is an algebraically completely integrable system,

known as the Hitchin integrable system

A Dλ-module (as in [20]) corresponds to a λ-connection ∇λ

∇λ = λ∂z −A(z), (C.7)

which is defined through the Leibnitz rule ∇λ(fs) = f∇λ(s) + λs⊗ df for any function f

and section s.

Semi-classically, such a λ-connection ∇λ reduces to a 1-form ∇0(z) with values in gl(n)

∇λ 7→ ∇0, (λ→ 0). (C.8)

We just encountered this object as a Higgs field φ. Moreover, we explained with (C.4) that

a Higgs (V, φ) and spectral data (Σ, L) provide equivalent information. In particular, the

spectral curve can be recovered by the determinant of the Higgs field. This implies that

λ-connections quantize spectral data.7

It tells us exactly which requirements a D-module quantizing the I-brane configuration

has to satisfy. Fermions on a degree n spectral curve have to transform under a rank n

λ-connection ∇λ on C, whose semi-classical λ→ 0 limit is given by the Higgs field

∇0 = π∗(η). (C.9)

A simple example of a λ-connection is given by

∇ = λ∂z −A(z), (C.10)

with A(z) = π∗(η). Its determinant is a degree n differential equation that canonically

quantizes the defining equation for Σ.

6In other words, φ ∈ H0(C,EndV ⊗KC).
7These λ-connections are also known as λ-opers, and play an important role in the quantum integrable

system of Beilinson and Drinfeld [21, 22].
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